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FOREWORD

This final report of the Orbital Transfer Vehicle (OTV) Concept Definition and
System Analysis Study was prepared by Boeing Aerospace Company for the National
Aeronauties and Space Administration's George C. Marshall Space Flight Center in
accordance with Contract NAS8-36107. The study was conducted under the direction of
the NASA OTV Study Manager, Mr. Donald Saxton, during the period from August 1984
to September 1986.

This final report is organized into the following nine documents:
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Book 4 - Operations and Propellant Logisties
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VOL. IV Space Station Accommodations
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VOL. VIII Environmental Analysis
VOL. IX Implications of Alternate Mission Models
and Launch Vehicles ‘
The following personnel were key contributors during the conduct of the study in the

disciplines shown:

Study Manager E. Davis (Phase I - 3rd and 4th Quarters and
Phase II)
D. Andrews (Phase I - 1st and 2nd Quarters)
Mission & System Analysis J. Jordan, J. Hamilton
Configurations D. Parkman, W. Sanders, D. MacWhirter

Propulsion W. Patterson, L. Cooper, G. Schmidt
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1.0 INTRODUCTION

This section providés a description of the study in terms of background, objectives,
issues, organization of study and report, and the content of this specific volume.

Use of trade names, names of manufacturers, or recommendations in this report
does not constitute an official endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

And finally, it should be recognized that this study was conducted prior to the STS
safety review that resulted in an STS position of "no Centaur in Shuttle" and
subsequently an indication of no plans to accommodate a eryo OTV or OTV propellant
dump/vent. The implications of this decision are briefly addressed in section 2.2 of the
Volume [ and also in Volume IX reporting the Phase II effort which had the OTV
launched by an unmanned cargo launch vehicle. A full assessment of a safety

compatible eryo OTV launched by the Shuttle will require analysis in a future study.

1.1 BACKGROUND

Access to GEO and earth escape capability is currently achieved through the use of
partially reusable and expendable launch systems and expendable upper stages.
Projected mission requirements beyond the mid-1990's indicate durations and payload
characteristies in terms of mass and nature (manned missions) that will exceed the
capabilities of the existing upper stage fleet. Equally important as the physical
shortfalls is the relatively high cost to the payload. Based on STS launch and existing
upper stages, the cost of delivering payloads to GEO range from $12,000 to $24,000 per
pound.

A significant step in overcoming the above factors would be the development of a
new highly efficient upper stage. Numerous studies (ref. 1, 2, 3, 4) have been conducted
during the past decade concerning the definition of such a stage and its program. The
scope of these investigations have included a wide variety of system-level issues dealing
with reusability, the type of propulsion to be used, benefits of aeroassist, ground- and

space-basing, and impact of the launch system.

1.2 OBJECTIVES AND ISSUES

The overall objective of this study was to re-examine many of these same issues but
within the framework of the most recent projections in technology readiness, realization
that Space Station is a firm national commitment, and a refinement in mission

projections out to 2010.
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During the nineteen-month technical effort the specific issues addressed were:

a. What are the driving missions?

b. What are the preferred space-based OTV characteristics in terms of propulsion,
aeroassist, staging, and operability features?

c. What are the preferred ground-based OTV characteristics in terms of delivery
mode, aeroassiét, and ability to satisfy the most demanding missions?

d. How extensive are the orbital support systems in terms of propellant logistics and
Space Station accommodations?

e. Where should the OTV be based?

f. How cost effective is a reusable OTV program?

g. What are the implications of using advanced launch vehicles?

1.3 STUDY AND REPORT ORGANIZATION

Accomplishment of the objectives and investigation of the issues was done
considering two basic combinations of mission models and launch systems. Phase |
concerned itself with a mission model having 145 OTV flights during the 1995-2010
timeframe (Revision 8 OTV Mission Model) and relied solely on the Space Shuttle for
launching. Phase 2 considered a more ambitious model (Rev. 9) having 442 flights during
the same time frame as well as use of a large unmanned cargo launch vehicle and an
advanced Space Shuttle (STS II).

The study is reported in nine separate volumes. Volume I presents an overview of
the results and findings for the entire study. Volume II through VIII contains material
associated only with the Phase I activity. Volume IX presents material unique to the
Phase II activity. Phase I involved five quarters of the technical effort and one quarter

was associated with the Phase II analyses.

1.4 PHASE II OVERVIEW

Essentially all technical areas of an OTV program are impacted when a large
unmanned cargo launch vehicle is employed and more demanding missions (relative to
Phase [) are to be accomplished. The anticipated result of these impacts is that the
preferred OTV concept in terms of degree of reusability will be heavily influenced by
the launch system not having cargo return to Earth capability and the mission model
being composed primarily of relatively heavy one way payloads.

A description of the content of this specific document, the analyses approach and

key study groundrules follows.
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1.4.1 Document Content

This document reports all work associated with the Phase II activity addressing
implications of advanced launch systems and more demanding mission models to an OTV
program. The top level transportation requirements resulting from the Rev. 9..Mission
Model are defined in the mission analysis section. The OTV concepts section addresses
the configuration and flight operations impacts in terms of sizing and degree of
reusability. An aeroassist analysis section is provided to address guidance and aero-
thermal issues associated with an aeroassist device not previously analyzed. Orbital
support needs primarily focus on the capacity of the propellant logisties system. The
launch operations section defines the OTV processing approach as brought about by
launching on an unmanned cargo vehicle. Mission control discussions emphasize
variations resulting from the OTV's having different degrees of reusability. Launch and
recovery implications address OTV concept differences in terms of performance and
Earth return of reusable OTV elements. The system trade section compares the various
OTV concepts and recommends a preferred concept. Cost data supporting the system
trades is also presented. The final technical section is a system level description of the

preferred concept.

1.4.2 Approach

The approach used to conduct the Phase II activity is shown in the logic flow of
figure 1.4-1. A substantial portion of the required data base was provided by the Phase I
analysis and also the STAS (Ref 7) study which had also analyzed comparable launch
vehicles and mission models. Each of the OTV concepts were characterized for all
technical aspects necessary to perform the mission model. The best ground based and
space based concepts were found and then compared to select the preferred OTV
concept. The major emphasis of the analysis was against the Rev. 9, Scenario 2 Mission
Model. Sensitivities within this model as well as assessment of Scenario 1 and 5 models

was also performed.

1.4.3 Key Groundrules and Assumptions
The top level Phase II study groundrules which influenced the nature of the
recommended program are as follows:
a. Trade decisions to be based primarily on discounted (10%) LCC and Rev. 9,
Scenario 2 Mission Model having 442 flights in the 1995-2010 timeframe.
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An unmanned cargo launch vehicle (CLV) is available in 1995 with 150K lbm
capability to 150 nm/28.5 degree at a cost per flight of $70M. No DDT&E cost.
The reference vehicle did not have cargo return capability. Further discussion
follows.

A new manned launch vehicle (STS II) with round trip payload capability is available
in 2002 and can deliver 65K lbm to LEO at a cost of $20M per flight. Further
discussion follows.

Launch cost assumes a users charge policy (i.e., STS).

The 10C for GB OTV is 1995 and 1996 for a SB OTV.

The key assumptions are as follows:

Main propulsion would be LO9/LH2 with advanced engine (selected in Phase I
trade). i

A ballute would be used for the aeroassist device on reusable OTV's (selected in
Phase [ trade).

Production learning cost factors of 90% for reusable elements (relatively low rates)

and 85% for expendable elements (high rates).

Typical of the advanced launch systems to be considered were those defined by

Boeing in the Ref. 7 study. The key characteristics of these vehicles are shown in figure

1.4-2. The majority of the cérgo to be launched was done using a new unmanned cargo

launch vehicle (CLV). This system employs a reusable booster and partially reusable

second stage with 150klbm delivery capability and 25 ft. x 90 ft. payload fairing. No

return capability is included. Payloads such as OTV related elements that must be

returned used the current STS until 2002. At that point, a new fully reusable STS II was

introduced. The cost related groundrules for these vehicles were no DDT&E impaet and
a cost per flight of $70M and $20M respectively for the CLV and STS II
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2.0 MISSION ANALYSIS

The new Rev. 9 Mission Model had several important effects on the OTV mission
analysis. These effects include changes in traffic level, orbital destinations, and vehicle
sizing requirements. The Rev. 9 model was designed to reflect upper stage
requirements identified in the Space Transportation Architecture Study (STAS) in order
to ensure consistency between the two studies. The model reflects Civil and DOD
requirements for varying levels of activity, as shown in figure 2.0-1. Study emphasis
was on the nominal Scenario 2, though sensitivities were conducted with respect to
Scenario 5, whieh has the highest level of OTV activity and involves aggressive
expansion of Man's presence in space. Launch mass requirements for the five Rev. 9

scenarios are given in figure 2.0-2.

2.1 REV. 9 - REV. 8 COMPARISON

This section discusses the difference between the Rev. 9 Scenario 2 Nominal Model
and the Rev. 8 Low Model. Summaries of these two models are given in table 2.1-1 and
2.1- 2. The key differences between the two models is the level of activity: 365 flights
in the Rev. 9 model compared with 160 flights in the Rev. 8 model as shown in figure
2.1-1. However the composition of the model is also different. The Rev. 9 model
ineludes new DOD mission categories, retrieval missions, and significantly heévier GEO
servicing and planetary missions.

The new DOD missions inelude high inclination (63.4 degrees, synchronous) and
polar (4000 nmi) orbits in addition to the GEO missions included in the Rev. 8 model. In
addition to these changes, the Rev. 9 DOD missions represent a larger proportion of the
total model than for Rev. 8 (58% versus 34%). Though high inclination DOD missions
were not specifiecally called out in the Rev. 8 model, it was assumed that 40% of the
DOD payloads (expressed in GEO-equivalent terms) were associated with a Molniya-type
orbit (i.e., DRM-2, which is deseribed in Volume II, Book 1, Section 2.4-2). Therefore,
the Rev. 8 analysis did incorporate the effects of high inelination missions, which have
important effects on OTV performance (especially space-based concepts). The Rev. 9
high inelination missions were not to Molniya orbit so new DRM's had to be developed
for the Rev. 9 analysis. These are described below in 2.3.

Two mission model changes affecting OTV sizing involve GEO servicing and

planetary missions. Servicing changes are as follows:

1. Manned sortie mass increased to 10,000 lbs roundtrip from 7,500 lbs roundtrip.
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2. Largest GEO Shack element increased to 24,080 lbs from 13,000 lbs.

3. Rev. 9 servicing generally begins earlier (1999 vs. 2004 for Rev. 8 Low model or
1998 for Rev. 8 Nominal model) and has higher annual logisties requirements
(25,500 lbs/yr vs. 7,100 lbs/yr for Rev. 8 Low and 20,000 lbs/yr for Rev. 8 Nominal)

The key effect of the new model is that the manned sortie requires considerably
more propellant than early delivery missions and thus two different sizes of vehicles are
benefical. The model includes some very large planetary missions (specifically Pluto
Orbiter and Neptune Flyby/Probe) which represent the largest OTV performance
requirements. However, in keeping with earlier analysis groundrules that planetary
missions would not be sizing missions, but would be launched in multistage OTV
configurations, these large payloads did not impact Rev. 9 OTV's sizing. The Rev. 9
OTYV planetary mission characteristics are shown in figure 2.1-2.

The Rev. 9 model also includes two retrieval missions. The payloads involved are
30 feet long and weigh 10,030 lbs. Though insignificant from a traffic level standpoint,
these retrieval missions would have a major impact on aerobrake sizing, if an
aerobraking approach were used for OTV recovery. It was therefore decided to conduct

retrieval missions all-propulsively, which would avoid OTV design impaects.

2.2 SIZING MISSIONS

Figures 2.2-1 and 2.2-2 shows the OTV sizing missions for Rev. 9, Scenario 2 and
Scenario 5, respectively. Scenario 2 is the reference nominal model and Scenario 5 is
the model with the highest OTV traffic. The principal difference between the two is the
lunar mission I0C, which determines when the large OTV must be developed. Table
2.2-1 gives the OTV sizing implementation for Scenario 2. The sizing missions for Rev.

8 are shown in figure 2.2-3 for comparison reasons.

2.3 DESIGN REFERENCE MISSIONS

Mission profiles for the Scenario 2 DRM's are given in figures 2.3-1 through 2.3-7.
These mission profiles are delta-v requirements and timelines for both ground-based and
space-based reusable and expendable OTV concepts. Note the different orbit transfer
characteristics for the ground-based and space-based polar missions (figures 2.3-6 and

2.3-7). The difference is a result of the large plane change requirement for the SBOTYV.

13
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In order to minimize delta-v, the OTV is injected into a transfer orbit with a very high

apogee where orbital velocity is low and where plane change delta-v would also be low.
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3.0 OTV CONCEPTS

3.1 INTRODUCTION )

The focus of the work in the second half of Phase 2 of the OTV study was the
impact of using a cargo launch vehicle in conjunction with the Shuttle to launch
payloads to LEO. This has significant impact on possible OTV configurations, and even
opens up the field further to other possible configurations than those studied up through
the first half of phase 2. With a cargo launch vehicle having lower launch costs, OTV's
with a lesser degree of reusability can be viable options. Thus, for this period of the
study, partially reusable vehicles were studied for both ground-basing and space-basing
as were expendable vehicles. In addition, fully reusable ground and space based
vehicles, were investigated. The key features of the six OTV concepts are indicated in
table 3.1-1. Figure 3.1-1 shows the top-level configuration characteristics of the GB
OTV's studied. The partially reusable system (PRS) includes a reusable
propulsion/avionies (P/A) module and an expendable tank module. The logic behind tﬁis
design is that the more expensive engines and avionics components are recoverable,
while the less expensive tanks and structure can be thrown away. The P/A module has a
lifting brake device in order to perform an aeromaneuver and be recovered at LEO. The
P/A module is then returned in the Orbiter cargo bay. The lifting brake is expendable,
as it is too large to be returned in the Orbiter cargo bay.

The fully reusable system (FRS) includes a fully reusable stage and an expendable
ballute aerobrake. In this system, the stage performs the mission, does an aero-
manuever, jettisons the ballute, and then is returned in the Shuttle cargo bay to earth.
This constrains the diameter of the vehicle to under fifteen feet in order to fit into the
Shuttle bay.

The expendable OTV system includes a stage that is completely expendable. The
advantage in this strategy is that the stage can be significantly smaller and lighter than
a reusable system because it only needs to go one way for payload delivery missions.
Because it is launched in a cargo launch vehicle and not returned to earth, the diameter

of the vehicle is not constrained by the Shuttle bay diameter.

3.2 LAUNCH VEHICLES AND BASELINE SUBSYSTEMS

For this part of the study a ecargo launch vehicle having a payload capability of
150,000 1b to 150 nm with a payload bay of 28 foot diameter and 90 feet long was
assumed. This payload envelope is enclosed in a payload shroud which is jettisoned

during flight. The Shuttle was assumed to be the OTV return vehicle having a payload
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bay of 15 foot diameter by 60 feet long. All return payloads or OTV's must be returned
in the Shuttle since the cargo launch vehicle is expendable and cannot return payloads to
earth. The comparative sizes of these payload bays are shown in figure 3.2-1.

Subsystem features common to most of the Orbital Transfer Vehicles are given to
Table 3.2-1. Variations from these features do occur, according to the particular design
or reusability of the vehicle. In the structures area, maximum use is made of advanced
composites such as GR/EP and GR/PI for body structures. In all vehicles, the propellant
tanks are of 2219-T87 aluminum. For meteoroid/debris shielding, the ground-based
vehicles are shielded by the GR/EP outer body shell, whereas the space-based vehicles
need an extra aluminum bumper shield protecting the tankage areas. The main engines
are sized for each type of vehicle according to the performance for the sizing mission in
the mission model, most commonly the manned servicing mission, using an initial thrust-
to-weight ratio of 0.12.

The structural design criteria used for the design of the vehicles considered in this
phase of the study are similar to those used in the past. For expendable vehicles,
however, the tankage is designed for a service life of only one mission instead of forty-
five. This results in a decrease of tank weight. A summary of the design criteria used

in this period of the study is given in Table 3.2-2.
3.3 GB FULLY REUSABLE OTV

3.3.1 Mission Application

Figure 3.3-1 shows the vehicle evolutionary path of the ground-based fully reusable
vehicle as applied to the mission model. Several options are possible for this
evolutionary path. The vehicle could be sized to do all missions in the model and would
be offloaded for the early missions. This option would penalize the small delivery
missions, which are the majority of the missions in the model. Another option is to size
the stage to do the early delivery missions, use a two stage vehicles for all larger
'missions, and man-rate the vehicle when the manned missions are performed. This
option would penalize the return payload (roundtrip) missions because of additional inert
weight and would not allow the return payloads to be returned in the Shuttle bay with
the two stages because of length. The preferred option, shown in Figure 3.3-1,
incorporates initial vehicles sized to perform the small delivery missions and uses these
relatively small stages in a two-stage configuration for the larger missions until the
manned mission era. These small stages are sized for a usable propellant loading of

55,000 1b. In the manned mission era, a new large stage is sized that is man-rated and
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sized to perform the return payload missions. This stage has a usable propellant
capacity of 78,700 1b.

3.3.2 Operational Description

Both the small and large vehicles are launched from the ground in an unmanned
launch ‘vehicle with the payload attached. In the case of delivery missions, the stage
with payload separates from the launch vehicle at LEO, delivers its payload, deorbits
and performs a ballute aeromaneuver, and then returns to LEO to await return to earth
on board the Shuttle. In the case of a return payload, the mission is performed then the
stage and payload are returned to LEO to await return in the Shuttle. When two stages
are used, the first stage performs the first perigee burn and is separated to return to
LEO. The second stage goes on to perform the remainder of the mission and return the
payload via aeromaneuver.

When a manned mission occurs, the stage with empty crew module is launched to
the Space Station, the crew is loaded, and the mission is performed. Thé crew is then
returned to the Space Station and the stage and crew module are returned to earth.

These operations are shown in figures 3.3-2 and 3.3-3.

3.3.3 Configuration Description

The configurations for the small and large stage ground-based OTV's are given in
figures 3.3-4 and 3.3-5. Weight summaries for these stages are given in Tables 3.3-1 and
3.3-2. Spacecraft structure consists primarily of a graphite/epoxy honeycomb sandwich
body shell enclosing strut-supported 2219-T87 aluminum propellant tanks. Meteoroid/
debris protection is provided by the body shell and MLI insulation around the tanks. This
system provides a 0.9995 probability of no tank wall impact for the mission. Main
propulsion thrust is provided by two advanced expander cycle engines, each having a
vacuum thrust of 6000 lbf. These engines provide thrust for all orbit transfer
maneuvers. Auxiliary propulsion is provided by a hydrazine system pressurized by
nitrogen gas supplied from separate gas bottles. Electrical power for the mission power
usage is provided by O2/H2 fuel cells, operating from supercritical O2/H2 storage
bottles. Active thermal control is provided for these fuel cells. Other thermal control
includes MLI on the main propellant tanks for propellant boiloff control and flexible
reusable surface insulation (FRSI) on the vehicle exterior for thermal protection during
the aeromaneuver.

For the aeromaneuver, high backwall-temperature ballutes are used. For small

payload delivery missions, a 34.4 ft diameter ballute is needed to perform the
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aeromaneuver. This diameter was selected to preclude wake impingement on the empty
payload rack that is returned on some multi-manifest missions. For large return payload
missions, particularly the 12k 1b logistics payload return, a 53.0 ft diameter ballute is
needed. These sizes are determined by aerostability criteria and are sufficient to
'protect the payload from wake impingement during the aeromaneuver.

With the small stage, length becomes a critical factor because the stage is returned
to earth in the Shuttle. In order to return two of these small stages in the Shuttle bay,
the stages were shortened by using a toroidal LO2 tank and flattening the heads of the
LH2 tank to 0.5 ellipses. The performance of the vehicle was degraded by adding the
extra weight associated with the tank changes, but it is possible to fit two empty stages
in the Shuttle bay for return to earth. This minimizes the cost of extra Shuttle launches
to return vehicles to earth. Figure 3.3-6 illustrates the benefits and weight penalty
resulting from the changes. Another consideration of returning two stages in the
Shuttle bay is the need for those stages to remain on-orbit for a period of time to await
the Shuttle return. During this time the subsystems are partially shut down. In order to
do this, extra subsystems must be added to the vehicle to maintain it during this period.
Extra RCS propellant is needed for attitude control and a solar array re-chargeable
battery system must be added to power the systems during this period. The body shell
with MLI and FRSI provides in excess of 0.99 probability of no tank impaet by
meteoroids/debris during the dormancy period of 21 days (max time before two small
stages available for return) and was considered sufficient during this non-critical portion
of the mission. These on-orbit dormancy provisions, with weight scars, are shown in
Table 3.3-3.

The large GB fully reusable stage is not constrained by return length and therefore
makes use of 0.707 elliptical domes on both tanks and does not include dormancy

provisions.

3.3.4 Launch and Return Concepts

Because the GB fully reusable vehicles are launched in the cargo launch vehicle and
returned in the Shuttle, they must be designed to be compatible with both systems.
Figures 3.3-7 and 3.3-8 show the launch and return concepts for the small and large
stages. In the case of a dual stage launch, a forward-bearing reaction system is used to
react a portion of the lateral launch loads into the payload shroud. For return in the
Shuttle, the OTV's have trunnion and keel fittings and latches installed in the Shuttle.
These fittings and latches are charged to the payload, as well as repressurization

systems are included in the OTV return ASE weight as shown in Tables 3.3-4 and 3.3-5.
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Also ineluded in this table, for comparison purposes, is the ASE required to launch a GB
OTYV in the Shuttle. For the Shuttle launch, the ASE weight includes keel and trunnion
bridge fittings, fill/drain/and dump systems, dump pressurization provisions, and vehicle
support structure. The cargo launch vehicle ASE weight includes payload-specifie

adaptors, forward-bearing reaction system, and fill/drain provisions.

3.4 GB PARTIALLY REUSABLE OTV

Table 3.4-1 shows the differences between the GB fully reusable and partially
reusable OTV subsystems. In both vehicles the tanks are launched full and the body
structures are designed to take the associated launch loads. However, the tanks on the
partially reusable vehicle are expendable and consequently are designed for a single
mission service life resulting in lighter weight. In the partially reusable vehicle, all of
the avionies, RCS, and main propulsion subsystems are situated in the
propulsion/avionies module which is reusable. The RCS includes larger thrusters than
those on the fully reusable vehicle in order to perform the post-aero delta V maneuver.
Also, instead of a ballute aeroassist device, the partially reusable vehicle uses a
symmetrie lifting brake on the P/A module to perform an aeromanuever. This is due to
the fact that integration of a ballpte onto the P/A module would be difficult, given the

P/A module dimensions.

3.4.1 Mission Application

Figure 3.4-1 shows the evolutionary path of the ground-based partially reusable
vehicle as applied to the mission model. As before, several options are available for this
vehicle evolution. The selected method, as shown in the figure, sizes the tankset for
two types of missions; 14.6k-1b delivery missions and 12k/10k-1b roundtrip mis§ions. The
smaller vehicle is sized for a usable propellant loading of 52,300 1b while the larger
vehiele is sized for a usable propellant loading of 93,000 lb. The P/A module is the sarﬁe

size for all vehicles and is man-rated prior to initiation of manned missions.

3.4.2 Operational Description

Both the small and the large partially reusable vehicles are launched from the
ground in the unmanned cargo launch vehicle with the payload attached. For delivery
missions, the stage and payload separate from the cargo launch vehicle, performs the
delivery at the GEO, and the stage deorbits. The tankset is targeted for earth impact
and then separates from the P/A module. The P/A module then performs an apogee

boost, using RCS, to target the aeromaneuver. The separation is done so that the P/A
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module will reenter and perform its aeromaneuver at least six minutes before the
tankset reenters and is destroyed. Once the aeromaneuver is performed, the P/A
module performs its correction and circularization burns using RCS to put itself into the
proper LEO orbit to await return in the Shuttle.

For payload return missions, the difference in operations is that after the deorbit
burn from GEO, the vehicle first targets and releases the return payload/aeroassist
system, which performs its own aeromaneuver and returns to LEO. The tankset is then
targeted and released followed by the P/A module. Again, a minimum of six minutes is
allowed for separation of the vehicles on reentry. In this case, the return payload and
the P/A module return to LEO to be retrieved by the Shuttle. In the case of manned
missions, the empty crew module is launched with the OTV and the crew is picked up at
the Space Station. Upon return, the crew is either returned in the Shuttle or returned to

the Space Station. These operations are shown in figures 3.4-2 and 3.4-3.

3.4.3 Configuration Description

The configurations for the small and large GB partially reusable OTV's are shown in
figures 3.4-4 and 3.4-5. Associated weight statements are given in Tables 3.4-2 and 3.4-
3. The tankset structure consists primarily of GR/EP honeycomb sandwich enclosing
strut-supported aluminum tanks, much like the fully reusable vehicle. Unlike the fully
reusable system, however, the tank diameter is not constrained to the shuttle bay
diameter, and the LH92 tank can be spherical and lighter weight. The LOg9 tank is
comprised of two elliptical domes for volumetric efficiency.

The P/A module contains all of the major subsystems including main propulsion,
auxiliary propulsion, electrical power, guidance and navigation, and data handling and
excludes only structure and tankage. Main propulsion thrust is provided by two
advanced expander cycle engines having a vacuum thrust of 7000 lbf each. These are
sized by applying a 0.12 thrust-to-weight factor to the large manned servicing mission
for which the large tankset is sized. The auxiliary propulsion system utilizes hydrazine
thrusters like that on the fully reusable OTV, but includes four 100 1bf thrusters on the
aft end to perform the necessary post-aero correction and circularization delta V's.
Like the fully re-usable system, the PRS power is provided by O9/H2g fuel cells, and the
same avionics subsystems are used. Thermal control consists of MLI on the propellant
tanks and FRSI around the engine cavity to protect the sensitive avionies and structure
from radiation heating from the engine nozzle. Because of the short length of the P/A
modules, up to five can be returned in the Shuttle cargo bay. Therefore, the P/A

modules wait on-orbit for up to 70 days for the Shuttle return. Like the fully reusable
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OTV, extra avionies, RCS, and electrical power items are added to the baseline system
to provide dormancy capability during the 70 days. This extra weight is explained in
Table 3.4-4.

The P/A module performs the aeromaneuver by means of a rigid symmetric lifting
brake. This brake is expendable and is covered with an ablative TPS. The rationale
behind the choice of this particular design is shown in figure 3.4-6. If the brake is
designed to be return in the Shuttle bay (<15 ft dia), the ballistic coefficient and
concomitant aerodynamic heating is so high that an ablative TPS must be used. This
TPS material leaves a charred surface that outgasses and return in the Shuttle may not
be allowed. Additionally, the packaging of avionics and engines behind the brake would
be difficult due to post-aeromaneuver heat soak through the TPS. On the other hand, if
the brake is designed to be expendable, sizing the brake to minimize wake impingement
on the P/A module yields a 16.5 foot diameter brake which still requires ablative TPS,
and has a system weight of 816 lb. In order to use flexible TPS, the brake must be 21
feet in diameter with a system weight of 936 Ib. Thus, the reference P/A module lifting
brake is 16.5 foot diameter, with ablative TPS.

3.4.4 Payload Return Concepts ,

In designing a partially reusable OTV, the location and configuration of any return
payloads becomes an issue. In the given mission model, the return payloads of particular
interest include a 12klb logisties payload that is 22 ft long by 15 ft diameter and a 12klb
manned servicing eab that is 10 ft long and 15 ft diameter. An analysis was performed
to determine the best method of returning these two payloads. This trade is detailed in
figure 3.4-7. One option is to place the payload between the P/A module and a large
aerobrake and to attach the tankset on the front of this stack. The problem with this
configuration is that the payload is not readily accessible and changeout of the payload
is difficult. Also, propellant transfer lines are necessary with multiple disconnects for
changeout.

The other option is to place the payload at the forward end of the vehicle and give
it an independent set of avionies and propulsion to perform its own maneuvering and
aeroassist. This option allows accessibility to the manned capsule and eases the
logisties module changeout. Also, propellant transfer lines along the payload are not
needed. Hence, this latter approach is the preferred option.

The aerobrake design features for each of the return modules are shown in figure
3.4-8, including those for the P/A module. The aerobrakes are all sized to minimize

wake impingement on the module and are all expendable. The manned module aerobrake
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is a rigid brake with ablative TPS because of the high ballistic coefficient. The logistics
payload module has a lower ballistic coefficient and the brake can make use of flexible
TPS. This brake system is also larger than 25 feet diameter and must be a flexible
system that can be deployed.

The configuration of the manned module aeroassist package is shown in figure 3.4-9
and a summary weight statement is given in Table 3.4-5. For this system all subsystems
are manrated and separate avionics, electrical power, and RCS capabilities are included.

The configuration for the logistiecs module aeroassist package is shown in figures
3.4-10 and 3.4-11 and a summary weight statement is given in Table 3.4-6. In this case,
the aerobrake is a deployable flexible lifting brake that is deployed using a motor-driven
linkage assemble on each rib. For this system, the subsystems are not manrated but
separate avionics, electrical power, and RCS capabilities are provided in a kitted P/A

module.

3.4.5 Stage Launch and Return Concepts

The GB partially reusable vehicles are launched from the ground with the CLV,
however, only the P/A modules are returned so they must be compatible with the
Shuttle cargo bay. These concepts are shown in figure 3.4-12. For launch, the
necessary ASE includes a payload- specific adaptor, a forward damping system, and
fill/drain provisions. For return in the Shuttle, trunnion and keel fittings are built into
the P/A modules to correspond with bridge fittings and latches installed in the Shuttle.
Also included in the Shuttle return ASE are electronies and instrumentation for
monitoring the P/A module systems during the return to earth. These ASE weights are
presented in Table 3.4-7. .

‘3.5 GB EXPENDABLE OTV - ALL-PROPULSIVE RETURN

The differences between the GB fully reusable and GB expendable OTV subsystems
are delineated in Table 3.5-1. In both cases the tanks are launched full so the body
structure is designed to take the launch loads. However, the tanks on the expendable
system are only used once so they are designed for a single mission service life and are
lighter weight. Due to the short duration of delivery missions for the expendable
vehicle, electrical power is provided by batteries rather than the more expensive fuel
cell systems. Also, because of the single mission life requirement, health monitoring
instrumentation is reduced in the expendable vehicle system. Because the missions are
performed all-propulsively, aeroassist devices are not required on the expendable

vehicle.
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R1B SUPPORT
ASSEMBLY

RCS/AVIONICS

LOGISTICS
PAYLOAD

RIB DEPLOYMENT DETAIL

DEPLOYED
RIBS (24)

SUPPORT
STRAPS

® DEPLOYED ON-ORBIT

© MOTOR-DRIVEN JACKSCREW DEPLOYMENT

ISOMETRIC VIEW

Figure 3.4-11 Logistics Payload Aeroassist Package Configuration Detail
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3.5.1 Mission Application

The evolutionary path of the ground-based expendable vehicle, as applied to the
mission model, is shown in figure 3.5-1. For the delivery missions, the vehicle can be
very small due to the fact that the vehicles are not returned from the higher orbit.
Three options for the evolutionary path of the expendable OTV were evaluated; (1) size
the vehicle to do the small delivery mission, (2) size the vehicle for the large mission
and offload for the smaller mission, and add an auxiliary tank to do the large manned
missions, and (3) size two identical stages to do the worst-case mission in a dual stage
configuration. Figure 3.5-2 shows the performance comparison of these three options
using RL-10-IIIB derivative engines. It is seen that even the optimum approach, that of
the dual stage system, exceeds the 150klb limit of the CLV. As is shown in figure 3.5-2,
it was found that the better performance of the advanced space engine (Isp = 483 versus
470 1bf - sec/lbm) puts the dual stage system within the launch vehicle capability. This,
then, becomes the preferred option. The small vehicle is sized for a usable propellant
loading of 30,500 lb, and the large vehicle is sized for a usable propellant loading of
58,100 1b. For delivery missions larger than 14.6klb delivery, one of the large stages is

used in an offloaded conditiqn.

3.5.2 Operational Deseription

Both the small and the large expendable vehicles are launched from the ground in
the unmanned cargo launch vehicle with the payload attached. For delivery missions,
the stage delivers the payload to orbit then performs a maneuver to place it in a
disposal orbit at GEO +850 nm as depicted in figure 3.5-3. This approach allows the
stage to be much smaller because it does not need to return to LEO.

For payload return operations, as shown in figure 3.5-4, the dual stage system with
payload is launched in the CLV. If the mission is to be manned, the crew is picked up at
the Space Station and the mission is performed. The first perigee burn is performed by
the first stage of the system, which is then jettisoned to reenter the atmosphere and be
destroyed. The second stage, with payload, completes the mission and performs an all-
propulsive delta V maneuver to return to LEO. The crew and return payload are returned
to the Space Station or to the Shuttle and then the OTV stage is deorbited and
destroyed.
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3.5.3 Configuration Desecription

The configurations for the small and large GB expendable OTV's are shown in
figures 3.5-5 and 3.5-6, respectively, with associated weight summaries given in Tables
3.5-2 and 3.5-3. The body structure consists primarily of GR/EP honeycomb sandwich
enclosing strut-supported aluminum tanks. Like the partially reusable vehicles, tank
diameter is not constrained to be returned in the Shuttle allowing the LH2 tank to be
spherical and the LO2 tank to be elliptical.

In the small vehicle, all subsystems have cost-optimum redundancy and electrical
power is provided by lower-cost silver-zinc batteries rather than fuel cells. Electrical
power on the large vehicle is provided by O2/H2 fuel cells with active thermal control
provisions. Main propulsion thrust for both sizes of vehicles is provided by two advanced
expander-cycle engines having a rated vacuum thrust of 8000 Ibf each. These are sized
by applying a 0.12 thrust-to-weight ratio of the large manned servicing mission start-
burn weight.

The auxiliary propulsion and the avionies systems are similar to those on the fuily

reusable vehicle. Thermal control for the main propellant tanks is provided by MLI.

3.5.4 Stage Launch Concepts

The launch concepts for the single small stage with payload and the dual stage
configuration are shown in figure 3.5-7. In the case of the small stage, the forward
bearing reaction system (FBRS) serves as a dynamic damping system. In the case of the
dual stage system, the FBRS reacts lateral loads from the stages into the shroud during
part of the launch and reacts loads from the shroud into the stages at other times. The
analysis dealing with the interaction of these elements is described later. Launch ASE
includes a payload-specific adaptor, forward-bearing reaction systems, and fill/drain
provisions. For the two stage system, fill/drain provisions must be included for the
second stage as well as the first stage. These items are reflected in the ASE weights
shown in Table 3.5-4.

A detailed structural analysis was performed to understand the interaction of the

dual-stage system and the payload shroud during the launch phase. In particular, it is

" desirable to minimize the loading on the OTV in a two stage configuration in order to

minimize the weight. Figure 3.5-8 illustrates two options relating to the design of two-
stage system to be launched in a CLV when the system is subjected to large lateral loads
during launch. Figure 3.5-9 shows the assumed launch configuration and launch profile
of a two stage launch vehicle consisting of a reusable flyback booster and a partially

reusable payload/tank module. The major events in the flight profile include maximum
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g-alpha when the maximum axial and lateral acceleration is experienced, shroud jettison
when the shroud and FBRS are jettisoned, and second stage burnout when large axial
loads are experienced. The ecritical loading conditions experienced by the shroud an
payload are delineated in figure 3.5-10. One option for reacting the lateral loads
experienced during launch is to cantilever the payload stack completely at the base of
the stack. The oiher option is to react some of the loads into the payload shroud by
using a FBRS.

For the first option, the payload stack was treated as a simple cantilever beam and
the first and second stages were assumed identical. For the second option, the payload
stack and shroud were treated as interdependent beams with a compatible displacement
at the FBRS location. Table 3.5-5 summarizes the analysis methods used to study the
reaction between the shroud and payload stack. The interaction is shown graphically in
figure 3.5-11 using the average thickness of the shroud and OTV body shell as the sizing
criteria. Consider the design point on the chart (flagnote 1) which is sized for max g-
alpha conditions. It can be seen that, at max g-alpha conditions, a positive margin is
available (flagnote 2). This means that, if a nominal shroud is used and if the FBRS and
OTV body shell are designed for maximum g-alpha conditions, the system will be stiff
enough to react the loads at max g-alpha. Figure 3.5-12 summarizes these findings. IF
a FBRS is not used, the weight penalty to the OTV will be 900 lb. With the FBRS, and
using a nominal shroud, the penalty is only 200 1b as compared to a vehicle sized to take
only the axial loads at burnout. An increase in the shroud weight does not improve the
OTV weight significantly and a decrease in the shroud weight would result in a shroud
that is dependent upon the payload for support during maximum aero loading conditions.

In conclusion, it can be seen that cantilevering the payload stack entirely causes
large moments at the base of the stack and forces a large weight penalty on the OTYV,
Use of the FBRS significantly reduces the moments in the stack and minimizes the OTV
body shell weight, using a nominal shroud design. Further optimization of the system
could be accomplished by adding an additional FBRS and by optimizing the FBRS
location. By doing these things, it could be possible to approach the nominal body shell
weight needed to support the system at maximum axial loads following jettisoning of the

shroud. These conclusions are summarized in Table 3.5-6.

3.6 GB EXPENDABLE OTV - AEROASSIST RETURN PAYLOADS
An alternative to returning payloads all-propulsively with an expendable system is
to return the payloads using aeroassist. With this system, the logistiecs module or

manned module would be returned with the same type of aeroassist packages as shown
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previously for the partially reusable vehicles. The difference is that after the OTV,
with payload, is deboosted from GEO, the entire OTV separates from the payload
module and is destroyed on reentry. The payload with its own aerobrake, avionies, and
delta V capability performs an aeromaneuver and is recovered either at the Space
Station or by the Shuttle. The flight operations for the expendable OTV with aeroassist
return payloads are shown in figure 3.6.1. Examining the effect of this approach on the
evolutionary path of the vehicle, shown in the figure 3.6-2, it can be seen that a single
large stage is sufficient to perform all of the larger missions in the model. The
configuration for this concept is shown in figure 3.6-3 and the summary weight
statement is given in Table 3.6-1. This vehicle is sized for a usable propellant loading of
79,000 1b. All subsystems included in this vehicle are similar to those of the all-
propulsive large stage expendable OTV. The launch configuration, as well as the ASE

associated with this concept, are given in figure 3.6-4.

3.7 SB FULLY REUSABLE SYSTEM

Table 3.7-1 shows the difference between ground-based and space-based fully
reusable OTV subsystems. Because the space-based vehicle is launched to LEO empty,
the support structure does not need to be sized for launch loads. Instead, the structure
is sized for loads at aeromaneuver when the tanks are only partially full. Thus, instead
of a body shell, external meteoroid/debris shielding must be provided for the OTV. In all
of the other vehicle subsystems the components are similar to those for the ground-
based vehicles except that on-orbit removal provisions must be added for some of the
components. Also, a GN2 auxiliary propulsion system must be added for deployment and
retrieval operations at the space station for the space-based OTV. The on-orbit
dormancy provisions that were necessary on the small GB fully reusable vehicle are not

necessary on the space-based vehicle.

3.7.1 Mission Application

Figure 3.7-1 shows the vehicle evolutionary path of the space-based fully reusable
vehicle as applied to the mission model. This evolution is similar to that of the ground-
based vehicle. The small stage, sized to do the early delivery missions, has a usable
propellant loading of 46,800 lb. The large stage, sized to do the later manned missions,

has a usable propellant loading of 70,200 1b.
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3.7.2 Operational Desecription

Both the small and large space-based vehicles are launched empty and are kept in
hangars at the Space Station. In all mission types, the propellants and payloads are
launched to orbit in the CLV, the OTV is refueled and mated to the payload on-orbit,
and the mission is performed. Upon return, after an aerobrake maneuver, the stage and
payload are recovered at the station and the OTV is refurbished for its next mission.

These operations are shown figure 3.7-2.

3.7.3 Configuration Description

The configurations for the small and large space-based OTV's are given in figure
3.7- 3 and 3.7-4. Weight summaries for these stages are given in Tables 3.7-2 and 3.7-3.
Spacecraft structure consists primarily of 2219-T87 aluminum propellant tanks
supported by graphite/epoxy struts. Meteoroid/debris protection is provided by a 0.016
in. aluminum bumper shield surrounding the entire exposed tank area and MLI insulation
around the tanks. Main propulsion thrust is provided by two advanced expander-cycle
engines, each having a vacuum thrust of 6000 1bf. These engines provide thrust for all
orbit transfer maneuvers and have provisions to be removed for on-orbit replacement,
provided by structural and plumbing disconnect plates at the engine interface. Auxiliary
propulsion is provided by a hydrazine system pressurized by nitrogen gas supplied from
separate bottles. Space maintenance of the RCS is also provided for the thruster
modules. Electrical power for the mission is provided by 09/Hg fuel cells operating
from supercritical 09/H9 storage bottles. Active thermal control is provided for these
fuel cells. Other thermal control includes MLI on the main propellant tanks for
propellant boiloff control and flexible reusable surface insulation (FRSI) on the vehicle
exterior for thermal protection during the aeromaneuver.

For the aeromaneuver, high backwall-temperature ballutes are used. A 37.5 ft
diameter ballute is needed to perform the aeromaneuver for small payload delivery
missions. Ballute size is determined by a BAC-established criterion to maintain wake
impingement heating on the empty payload rack that is returned on some multimanifest
missions to below 0.5 BTU/ft2 - seec. The larger return payload missions, such as the
12k-1b logisties payload, require a 58.0 ft diameter ballute on the second stage of the
two stage system. A 63.0 ft diameter ballute is needed for the large single stage system.
These ballute sizes are determined by aerostability criteria but are also sufficient to

protect the payload from wake impingement during the aeromaneuver.
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3.8 SB PARTIALLY REUSABLE OTV

Table 3.8-1 shows the major subsystem differences between the ground-based and
space-based partially reusable vehicles. The tanksets are nearly identical since both are
launched from the ground fully loaded. The P/A module is the only part of this vehicle
that is space-based and therefore all of the P/A module subsystems have space
maintenance provisions. Also, a GN2 auxiliary propulsion systems is provided for
deployment and retrieval at the space station. No on-orbit dormancy provisions are
required on the space-based version because it goes directly to the Space Station

following its mission.

3.8.1 Mission Application

Figure 3.8-1 shows the evolutionary path of the space-based partially reusable
vehicle as applied to the mission model. As before, several options are available for this
vehicle evolution. The selected approach, as shown in the figure, consists of two
tanksets for the two mission types, i.e., the small 14.6k-1b delivery and the 12k/10k-1b
roundtrip. The smaller stage is sized for a usable propellant loading of 50,400 1b while
the larger tankset is sized for a usable propellant loading of 90,800 Ib. The P/A module

is the same size for all vehicles and is manrated as the manned missions occur.

3.8.2 Operational Description

For the space-based version of the partially reusable vehicle, the CLV launches the
tanksets, aerobrakes and payload to the Station where vehicle assembly occurs. Return
from a GEO payload delivery mission initially involves the vehicle performing a deorbit
burn targeted for entry into the earth's atmosphere and burn-up. The P/A module
separates from the tankset shortly after the deorbit burn and makes a corrective burn
using its RCS so it is targeted for an aeromaneuver at LEO. The separation is done so
that the P/A module will reenter and perform its aeromaneuver at least six minutes
before the tankset reenters and is destroyed. Once the aeromaneuver is performed, the
aerobrake is jettisoned and the P/A module performs its correction and circularization
burns using RCS to put itself into the proper LEO orbit to return to the station.

Payload return (roundtrip) missions differ in that, after the deorbit burn from GEO,
the vehicle first targets and releases the return payload with its own aeroassist system
for an aeromaneuver; then the tankset is targeted and released; and then the P/A
module is targeted for its aeromaneuver. Again, a minimum of six minutes is allowed

for separation of the vehicles on reentry. In this case, the return payload and the P/A
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module return to LEO to be retrieved at the Space Station. These operations are shown

in figure 3.8-2.

3.8.3 Configuration Description

The configurations for the small and large space-based partially reusable OTV's are
shown in figures 3.8-3 and 3.8-4. Associated weight statements are given in Tables
3.8-2 and 3.8-3. The small and large tanksets have identical structure to the ground-
based versions, with a GR/EP body shell enclosing strut-supported aluminum tanks.

The P/A module contains the main propulsion, auxiliary propulsion, electrical
power, guidance and navigation, and data handling. Main propulsion thrust is provided
by two advanced expander cycle engines having a vacuum thrust of 7000 Ibf each. These
engines are sized by applying a 0.12 thrust-to-weight factor to the large manned
servieing mission, for which the large tankset is sized. Space maintenance provisions
for the main engines are included as structural and plumbing disconnects. The auxiliary
propulsion system includes a hydrazine system, like that on the ground-based PRS, and a
gaseous nitrogen thruster system for close proximity operations near the Space Station.
The hydrazine system has four 100 lbf thrusters on the aft end, in addition to the 25 1b
thrusters, used to perform the necessary post-aero correction and circularization delta
V's. The nitrogen system has small 5 Ibf thrusters to provide small delta V capability
with low contamination. Provisions for space maintenance of the thruster modules are
also included for the RCS systems.

Like the GB PRS, the SB PRS power is provided by 09/H2 fuel cells and the same
avionies subsystems are used. On the space-based P/A module, space maintenance
provisions are included for some of these subsystems. Thermal control consists of MLI
on the propellant tanks, and FRSI around the engine cavity to protect the sensitive
avionies and structure from radiation heating from the main engines.

The space-based P/A module, like the ground-based one, performs an aeromaneuver
by means of a rigid symmetrie lifting brake. In this case, though, the brake is attached
to the P/A module with electromechanical latch/release mechanisms for ease of on-
orbit assembly at the Space Station. The brake is expendable and is covered with an
ablative TPS.

The payload return concepts for the space-based partially reusable vehicle are very
similar to those for the ground-based vehicle. As with the P/A module, extra GN2
propulsion systems must be provided on the SB return payload module for station

retrieval operations.
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3.8.4 Launch Concept
The launch arrangement of the tankset and P/A module aerobrake associated with a
SB PRS is shown in figure 3.8-5 along with ASE weights.
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4.0 AEROASSIST ANALYSIS

This section describes the aeroassist guidance and aerothermal analysis unique to
the partially reusable OTV concept. Aeroassist data associated with the ballute braked
OTV, is the same as defined in the Phase I documentation of Volume II, Book 2, and
Voluem I, Books 3.

4.1 Aeroassist Guidance
The new PRS vehicle has a return strategy different from previous aeroassist
vehicles and, because of the higher ballistic coefficients, has potentially different

concerns for aeroassist guidance.

4.1.1 PRS Vehicle

The partially reusable stage (PRS) consists of three elements as shown in figure
4.1-1. The main propulsion and avionics for the vehicle are part of the P/A module
along with an aerobrake used for return to LEO. The payload (crew module or logistics
module) has its own brake. The atmospheric entry parameters for the aerobraking
module options are shown in figure 4.1-2. The final element is the tank set which has no

aerobrake and is targeted to burn up in the atmosphere after mission completion.

4.1.2 PRS Returns

From GEO deorbit to LEO circularization, the PRS mission sequence is the same
for both ground and space basing. However, there are two different return strategies:
one for unmanned delivery missions and another for manned servicing missions,

For the unmanned delivery missions, the payload remains at GEO and only the tank
set and P/A module returns. The return sequence for this mission is for a deorbit burn
of 6050 fps using the MPS. This places the combination in a 45 X 19323 nm orbit. The
P/A module separates from the tank set and immediately does a +198 fps ACS burn to
place the P/A module into a 45 X 19329 nm orbit with a flight angle of -2.185 deg. On
this orbit, the P/A module will enter the atmosphere (400,000 ft) in 307 minutes. The
tank set will enter the atmosphere in 313 minutes after separation and burn up. The
P/A module will execute an aeromaneuver and be recovered.

The sequence for the manned servicing missions consists of a GEO deorbit burn
using the MPS. This 6050 fps burn places the vehicle in a 45 x 19232 nm orbit. The
crew module separates from the P/A module and tank set and enters the atmosphere at

400,000 ft in 313 minutes. After separation from the crew module, another MPS
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maneuver of +371 fps places the P/A module and tank set into a 45 x 19344 nm orbit
with a +4.08 deg flight path angle. The P/A module then separates from the tank and
does a -190 fps ACS burn. This places the P/A module into a 45 x 19328 nm orbit with a
+1.99 deg flight path angle. The P/A module will reach the atmosphere in 318 minutes,
followed by the tank set at 324 rriinutes. This sequence is illustrated in figure 4.1-3.

4.1.3 Guidance Simulation

During this phase of the contract, the primary emphasis on aeroassist guidance was
to assess the effects of vehicle roll dynamies, low L/D limits, and increased ballistic
coefficient on the guidance error during the aeromaneuver. Modifications to the
computer simulation, OPTIC, were required to model the effects of inertia and finite
roll rates on the guidance errors. The structure of the modified Gamma Guidance
algorithm makes it possible to antieipate the finite time requir.ed to execute a guidance
command. This minimizes the impact of the vehicle dyn‘amics on the guidance errors.
The choice of a command philosophy has a much larger impact on the propulsive delta-v
necessary to circularize in the recovery or phasing orbit, than does the finite execution
time.

Earlier guidance analysis of low L/D aeroassist vehicles ignored the effects of
vehicle roll dynamies and assumed instantaneous response to guidance commands. In
order to satisfy final orbit constraints of radius-of-apogee and both inelination and
RAAN, it is necessary to command bank angle reversals. Of course, instantaneous
response is increasingly unrealistic for large roll reversals. To assess the effect of
finite response time, the OPTIC guidance simulation was modified to include angular
acceleration and angular rate limits on the response to a commanded bank angle
reversal or change in bank angle. Because the Gamma Guidance algorithm projects
(integrates) the anticipated atmospheric trajectory forward to atmospheric exit using
the present command profile, the guidance algorithm can anticipate the effects of the
finite response time and base the update command on the anticipated delay in the
execution of a change in the bank angle or bank angle reversals. Figure 4.1-4 is a block
diagram of the guidance algorithm. The algorithm was modified to include vehicle roll
dynamies in the trajectory prediction block. Modifications to the OPTIC simulation are
indicated on the structure diagram in figure 4.1-5. These include the modifications to

the algorithm, plus the modifications to the vehicle flight simulation block.
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4.1.4 Guidance Response

The most significant impact of finite bank angle response is in the choice of control
variables or the command profile. In the case of instantaneous response, it is only
necessary to have the capability to execute two or three bank angle reversals in order to
achieve the desired exit plane with the correct radius-of-apogee, inclination, and
RAAN. However, when finite response is imposed, the choice of direction of roll
becomes important. In executing a reversal, it is possible to roll either through the lift-
up or the lift-down positions with different results for the guidance response.

The effect of the choice of roll direction was investigated on nominal trajectories
for two vehicles. The two low L/D vehicles were a P/A module and a logisties module
with parameters given in figure 4.1-6. The P/A module had a ballistic coefficient of
21.1 lbm/ft**2 with a ballistic coefficient of 10.2 lbm/ft**2 for the logistics module. A
return from GEO was assumed for initial entry conditions with the aeromaneuver
targeted for an exit trajectory of 150 nm apogee, inclination of 28.5 deg, and RAAN of
0 deg. The entry trajectory was also at an inclination of 28.5 deg and 0 deg RAAN.
These conditions did not take advantage of any plane change capability during the aero-
maneuver, but required the guidance to remove any plane change occurring during the
aeropass. The guidance algorithm actually targeted both inclination and RAAN. With
the Modified Gamma Guidance algorithm, it is possible to target plane change (or
wedge) angle. However, inclination and RAAN were used because plane change angle
does not determine a unique final orbit plane.

Figures 4.1-7, -8, and -9 show results obtained for the two vehicles using the bank
angle reversal option which rolls through the lift-up position. The delta-v to insert in
the targeted circular orbit was 369.3 ft/sec for the logistiecs module and 377.7 ft/sec for
the P/A module. This shows that the effect of ballistic coefficient on the propulsive
delta-v requirements for the post-aeromaneuvers is small. However, the depth of
penetration into the atmosphere (figure 4.1-7) is significantly different for the two
vehicles. When more is known about the statistical properties of the atmospheric
density variation with altitude, the depth of penetration may be a factor to consider in
design of the vehicle. A factor of definite concern, however, is the maximum heating
rate as shown in figure 4.1-9. The higher ballistic coefficient vehicle increases the
maximum heating rate by a factor of almost 1.4.

Similar results are shown in figures 4.1-10, -11, and -12 for the vehicles using the
lift-down bank angle reversal option. The delta-v to insert into the targeted orbit was
211.2 ft/sec for the logisties module and 216.5 ft/sec for the P/A module. The values of

the insertion delta-velocities for the two vehicles using the lift-up or lift-down guidance
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philosophy are shown in figure 4.1-13. The effect of ballistic coefficient on insertion
delta-v is again shown to be small. For the lift-down command profile, the maximum
heating rate (figure 4.1-12) is again found to be about 1.4 times greater for the higher
ballistic coefficient vehicle. In comparing the runs using the different roll direction
command prof.iles, it is seen that lift-up results in about a 2.3 nm deeper atmospheric
penetration (figures 4.1-7 and -10) and resulting higher heating rates (figures 4.1-9 and -
12). The maximum heating rates for the lift-up reversals are about 1.3 times greater

than those for the lift-down reversals.

4.1.5 Coneclusions

The above data indicates that the choice of lift-down reversal is the likely guidance
philosophy. However, there are other factors to be considered. The lift-down
trajectories have longer paths through the atmosphere and may be sub}ect to greater
variation in atmospheric density fluetuations. The question is whether there is greater
variation vertically or horizontally in the atmosphere . Also, the longer pass through
the atmosphere results in the application of a lower heating rate but for a longer time
which may result in higher temperatures. Another consideration is the possible impact
on mission suecess. In the case of unexpectedly large atmospheric perturbations, a lift-
up reversal philosophy may insure atmospheric exit, rather than capture.

The coneclusions from the aeroguidance analysis are that an L/D vehicle of 0.12 has
sufficient capability to correct for atmoséheric disturbances and entry errors. The
increase in ballistic coefficient from 10.2 lbm/ft**2 has a minimal effect on the
required propulsive delta-v requirements for post-aeromaneuver circularization. The
primary effect of the change in ballistic coefficient is the increased susceptibility to
atmospherie perturbations and the increased peak heating rate. These effects can be
reduced, however, by considering the total mission in the choice of the control variables

and roll philosophy.

4.2 AEROTHERMAL ANALYSIS

The relatively high ballistic coefficient and concomitant heating rates associated
with the reentry of the propulsion/avionies (P/A) module of the partially reusable OTV
have been assessed with regard to heat shield material compatibility. The left hand
portion of figure 4.2-1 shows the predicted maximum, nominal, and minimum peak
heating rates for P/A module reentry. The reason there is a wide band of peak heating
rates shown is a result of inadequate understanding of the phenomena of nonequilibrium

radiation and surface catalytic properties that become increasingly important as heating
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rates increase (see section 4.7, Vol III, for additional explanation). On the right side of
figure 4.2-1, four thermal protection system (TPS) materials are shown with life
requirements and heating rate capability for current technology and expected 1990
technology assuming normal growth and accelerated growth. It is seen that current
technology requires the use of an ablator for the nominal or higher predicted heating
rate. Normal technology growth by 1990 is expected to produce a high density
refractory (HDR) insulation capable of withstanding the nominal predicted heating rate.
Accelerated growth to 1990 is expected to provide the capability for HDR to withstand
the maximum predicted heating rate and the capability of rigid surface insulation (RSI)
to withstand the nominal heating rate.

Based on the predicted heating rates, their uncertainty, and the state-of-the-art for
TPS, an ablative heat shield is recommended for the P/A module. A reusable insulation
may be used if technology advances are made in the areas of aerothermal environment

prediction techniques and reusable TPS materials capability.
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5.0 ORBITAL SUPPORT

This section describes the orbital support associated with a space based ballute
braked OTV that performs the Rev. 9 mission model and uses both CLV and STS launch

vehicles to support the OTV missions.
5.1 SPACE STATION ACCOMMODATIONS AND OPERATIONS

5.1.1 Support Facility Location

The key issue associated with a SB OTV performing the Rev. 9 mission model was
how many orbital support facilities should be used. The model involved 423 OTV flights
with the majority of these having a destination of synchronous orbit (19,323 nm,
0 degree inclination). There were 131 other missions each involving 10K lbm payloads
going to 19,323 nm/63 degrees and 16 missions involving 4K lbm payloads goihg to
4000 nm/90 degrees. _

Several orbital support facility options were investigated. One was to have a single
facility located at 250 nm/28% degrees and be part of the Space Station. The second
option was to have two facilities with one being at the Space Station to support the GEO
missions and another at 200 nm/57 degrees to support the high inclination missions. The
inclination of the second facility was selected because it was the closest to the mission
orbit involving the most OTV flights that could still be reached by the STS.
Discriminators between the two options included delta propellant launch cost, delta
facility cost, and delta crew logistics cost.

The high inclination support facility is characterized in Figure 5.1-1. The structure
and major subsystems are assumed to be derived from the Space Station. OTV support
accommodations include a hangar and maintenance equipment, propellant storage and
transfer provisions, and a small common module to house the support crew while at the
facility.

A summary of the key characteristics concerning OTV propellant requirements and
crew logisties is presented in Table 5.1-1. The amount of propellant that must be
launched to support is space based OTV was found to be greater for the single facility
option. This occurs because the high inelination missions require large plane changes to
reach the mission orbit and return.

Two options were evaluated concerning logistiecs and manning for the high
inelination facility. Logisties flights for the permanently manned option (90 day
staytimes) required the full capability of an STS. STS logistics flights to support 2 week

stay times in the man-tended mode had significant payload margin and thus took up
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cargo to support the OTV flight (either the payloads or propellant). Consequently, fewer
CLV flights were required. The cost shown reflects the additional ground processing
effort required because the Orbiter had 2 weeks less time for ground processing. Ten
STS flights were required for this mode. As a result, the man-tended mode offered the
lowest aﬁnual cost.

The cost comparison of the two orbital support facility options is presented in Table
5.1-2. A single facility such as the Space Station located at 250 nm/28.5 provided the
least cost and is the selected approach. Although this approach had more propellant
delivery launch cost because of greater OTV delta V requirements (plane changes) there
was a significant savings in not having to duplicate facility equipment and less logisties
cost to support a crew at the high inclination facility. (Note: there is logisties and
facility cost at the low inclination facility but these are the same for both support

options and thus delta costs are used).

5.1.2 Selected Accommodations and Operations

The selected approach for providing the facility to support a SB OTV was to add the
necessary accommodations and operational capability to the NASA Space Station
located at 250 nm/28.5 degree. The key features of the accommodations and operations
are summarized in Figure 5.1-2. The description of both the accommodations and
operations is essentially the same as that provided in Volume IV and Volume II, Book 4,
respeétively. The accommodations include common module equipment including an
airlock and control consoles for OTV support, addition of one or two hangars for
providing OTV environmental protection as well as a maintenance location, external
servicing equipment, and propellant storage and transfer provisions. Further definition
of the hangar for the ballute braked OTV is shown in Figure 5.1-3. Further description
of the propellant storage system and tanker can be found in Section 5.2.

Processing an OTV for each flight involves inspection, maintenance, servieing,
payload attachment and checkout, and loading of consumables. Based on a combination
of the work performance in the OTV concept study and on the OTV Operations study
(Boeing for KSC) a total of 313 IVA hours and 52 EVA hours are required to prepare an
OTV for its flight. Per study groundrules of $81,700 and $18,700 per crew hour for EVA

and IVA, respectively, a turnaround cost of $10 million per flight ocecurs.
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5.2 SB FRS PROPELLANT LOGISTSICS
This section discusses the propellant requirements, tanker and propellant storage

associated with the SB FRS for scenario 2 of the Revision 9 mission model.

5.2.1 Propellant Requirements

The propellant required by the SB FRS is indicated by the lower line in figure 5.2-1
in terms of annual mass for the years 1995 through 2010. Earlier studies have shown
that average losses due to boil off, feed line and OTV chilldown, and nonrecoverable
OTV and tanker residuals are 7.6%. The upper line of figure 5.2-1 indicates the annual

requirement for propellant delivery by the tankers to account for these losses.

5.2.2 Propellant Tanker

CLV payload capability to the Space Station altitude (250 nm) is 139,000 lbm. The
tanker has been defined that takes full advantage of the CLV capabilities and can be
returned in the Orbiter cargo bay. Tanker dimensions are shown in figure 5.2-2. The
tanker is capable of delivering 120,478 lbm of LO9/LH9 (discounting residuals and
boiloff). Also required by the OTV, and provided by the tanker, are hydrazine and
nitrogen for RCS and pressurization use. Helium is provided for tanker pressurization
during Orbiter return. The tanker is composed of an outer shell of graphite - epoxy,
tanks of 2219 aluminum with 0.707 elliptical domes, and cylindrical sections. Spherical
2219 aluminum tanks are employed in the intertank and forward of the LH2 tank for
helium, nitrogen, and hydrazine storage. Cryo tank insulation is DAK with nylon serim;
40 layers for each tank. ASE provides the tanker-to-CLV transition and is sized to
support a cantilevered fully-loaded tanker under worst case launch loads. A weight

summary is shown in table 5.2-1.

5.2.3 Propellant Storage at Space Station

Storage of eryogenic propellants at the Space Station involves three issues: storage
capacity required, storage tank design to maximize utility and minimize losses, and
location of the tank(s) on the Space Station. The latter subject is considered in the
purview of the Space Station design and is not addressed here. OTV concerns are that
the propellant be available when needed by the OTV and that propellant transfer lines

not be excessively long thereby causing increased chilldown losses.
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Table 5.2-1. Summary Weight Statement for 120.5K LOo /LH,

Propellant Tanker

WEIGHT (LBM,)

STRUCTURE
THERMAL CONTROL
AVIONICS
ELECTRICAL POWER

MAIN PROPULSION FLUIDS AND
“GASES TRANSFER SYSTEM

REACTION CONTROL FLUIDS AND
GASES TRANSFER SYSTEM

ELECTRICAL POWER FLUIDS AND
GASES TRANSFER SYSTEM

WEIGHT GROWTH MARGIN
(TANKER MODULE DRY WEIGHT)

MAIN PROPULSION TRANSFER SYSTEM RESIDUAL
FLUIDS AND GASES

REACTION CONTROL TRANSFER SYSTEM RESIDUAL
FLUIDS AND GASES

ELECTRICAL POWER TRANSFER SYSTEM RESIDUAL
FLUIDS AND GASES ’

(TANKER MODULE END-OF-TRANSFER WEIGHT)
MAIN PROPULSION FLUIDS AND GASES LOSSES
RCS FLUIDS AND GASES LOSSES
EPS FLUIDS AND GASES LOSSES
TRANSFER FLU!IDS AND GASES

(MPS)

LO>LH 5 (EPS)

GHg

NzHa

GN2

{TANKER MODULE GROSS WEIGHT)
CONTRACTOR-FURNISHED ASE
GQVERNMENT-FURNISHED ASE

 (LAUNCH WEIGHT)
TANKER MASS FRACTION

4,841
388
185

194
2,091

759

1,236
{9,694)
2,830

250

(12,574)
1,607

122,769
120,478

15
1,747
529
(136,950)
2,050

(139,000)
0.880
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5.2.3.1 Propellant Storage Capacity Requirements
The OTV propellant storage tanks at the Space Station must have the capacity to

contain the following:

o propellant from one tanker with storage tank peak residuals
o propellant sufficient to accomplish the two most demanding missions during

unmanned era (scenario 2, 1995 to 2002)

o propellant sufficient to accomplish the two most demanding missions and a manned

GEO rescue mission during the manned era (scenario 2, 2002 to 2010)
o an allowance over the foregoing of 6% for chilldown and boiloff.

An additional eriterion used in storage tank sizing was that loss of a single storage
tank shall not negate OTV capability.

An analysis of scenario 2 missions for propeilant requirements for the unmanned
~and manned eras (as defined in the previous paragraph) has resulted in the quantity
history shown in figure 5.2-3. Note that the requirement and the tanker capacity are
nearly the same for the first 3 years. The large increase between 2001 and 2002
reflects the transition from the unmanned era to the manned era and the concomitant
rescue mission capability. The increase of 2009 and 2010 is due primarily to the

unmanned lunar surface delivery missions.
5.2.3.2 Storage Tank Design
LH92/LO2 propellant storage tank sizing was determined based on the following
criteria:
o one tank failure shall not negate OTV capability (see also section 5.2.3.1)

o the set shall be deliverable and returnable by the Orbiter

o all tanksets shall be the same size and design thereby minimizing the production

cost.
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The storage tanks are delivered to the Station empty of propellant but with helium
at 20 psia for stabilization of the light weight structure. Launching the tanks empty is
desired to obviate the structure otherwise required to support the propellant weight.
This added structure would contribute to the heat paths and increase boiloff as well as
Station mass. Additionally, empty tanks obviate cryo-pumping concerns and the need
for either an MLI purge or the use of a Dewar.

Referring again to figure 5.2-3, it is seen that the peak propellant requirement in
2009 and 2010 is 299,000 lbm. With a 6% allowance for boiloff and chilldown, the
propellant storage capacity requirement is 317,000 lbm. The determination of storage
tank size was guided by the idea that, while at least two are required for redundancy,
fewer large tanks are thermally more efficient than more smaller tanks as long as a
tankset will fit in the Orbiter payload bay. To this end, a tankset capacity of 106,000
Ibm was defined with three sets I:equired for the manned era and two for the unmanned
era. Thus, as indicated in figure 5.2-3, two tanksets result in a storage capacity of
212,000 lbm initially and, with a third tankset, 318,000 lbm after the onset of manned
OTYV use. ’ )

The tank designs that meet the foregoing criteria are shown in figures 5.2-4 and
5.2-5 for the LH9 and LO2 storage tanks, respectively. These tanks incorporate a 2219
aluminum pressure vessel 13 feet in diameter, 120 layers of MLI, two vapor-cooled
shields, fiberglass strap supports, and a 14.33 foot diameter debris/meteoroid isogrid
protéction shell. The lengths of the LH2 and LO29 tanks with insulatfon and debris shield
are 34 and 15.7 feet, respectively. Liquid acquisition is achieved, for both LH2 and
LO29, using 8 channels on tank meridians with two sereens with 325 x 2300 mesh on one
side of the channel. Tank capacity is 15,470 lbm with 5% ullage and 90,383 lbm with 2%
ullage for the LH2 and LOg, respectively. The tank weights with ASE are 7348 and 3463
Ibm for the LH9 and LO9 tanks, respectively.

5.2.3.3 Propellant Transfer

Propellant transfer from the tanker to the storage tanks or from the storage tanks
to the OTV is shown, schematically, in figure 5.2-6. Propellant transfer is effected by
imposing a pressure differential between the tank being evacuated and the tank being
filled. The screen liquid acquision system assures that only liquid is transferred.
Propellant chilldown and boiloff gases are compressed and stored at 2000 psia. These
compressed gases are used for propellant transfer or are stored until disposition can be

accomplished.
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6.0 OTV LAUNCH OPERATIONS

The OTV Launch Operations analysis is derived and tailored from work done by
Boeing in support of the Space Transportation Architecture Study (STAS) and the KSC
Orbital Transfer Vehicle Launch Operations Study. It includes:

a. Operational scenarios based on a STAS developed Cargo Launch Vehicle and

Orbiting Vehicle with return cargo capability.

b. An analysis of timelines, facility concepts and fleet sizes.
e. Recurring and nonrecurring OTV costs extracted from the STAS developed Ground

Operations Cost Model (GOCM).

d. Anupdate of Space Based OTV timelines and costs based on the KSC study data.

6.1 OPERATIONAL SCENARIOS

6.1.1 Ground Based OTV Operational Scenarios

The operational scenario for a reusable ground based OTV (GBOTYV) is to launch the
OTV on a Cargo Launch Vehicle and to recover it with an Orbiter Vehicle. The STAS
configuration used for the Cargo Launch Vehicle is the RFLY-PPA which includes a
Reusable Flyback Booster - "RFLY" - coupled to a partially reusable second stage with a
Propulsion/Avionies module - "PPA". The Orbiter Vehicle is the RFLY-ROI which
includes the same Reusable Flyback Booster coupled to a reusable second stage which
goes into orbit and has an internal payload bay -"ROI".

The reusable GBOTV ground turnaround timeline includes one shift (8 hours) to
extract (recover) it from the ROI payload bay and 73 shifts to refurbish, integrate and
launch it on a RFLY-PPA. No distinction is made between the ground processing of a
p'artially reusable and fully reusable vehicle. The mating of a P/A module with a new
tankset and aeroassist recovery device (partially reusable vehicle) is considered
equiValent to the recertification of a used tankset and mating with a new aeroassist
device (fully reusable vehicle). The equivalency is assumed because of the uncertainty
or cryogenic tankset recertification requirements. The only experience with reusable
space qualified cryogenic tanks is that with the STS Orbiter PRSD tanks which are
entirely different from those proposed for an OTV.

The recovery scenario for a GBOTV has the used OTV's parked in low earth orbit
until there are sufficient OTV's to fill the ROI payload bay - 5 P/A modules or 2 OTV's.

The "parking" and resultant delay has a very definite effect on OTV fleet size.
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The expendable GBOTV processing is based on existing upper stage processing with
adjustments taken for design improvements, learning, and economies of scale due to
higher launch rates. The processing of the aeroassisted payload module, used on those

missions requiring a return, is not included in the expendable GBOTV processing effort.

6.1.2 Space Based OTV Operational Scenario

The Space Based OTV (SBOTV) scenario includes the ground processing of either a
reusable tanker or an expendable tankset, depending on the SBOTV configuration. The
tanker processing scenario includes a recovery, refurbishment/recertification, and
integration with the launch vehicle. The tankset processing scenario includes the
assembly and checkout of the new tankset, an integration with the payload, and an

integration with the launch vehicle.

6.2 GB OTV OPERATIONS ANALYSIS

Figure 6.2-1 shows a typical ground based OTV flow. It is extracted directly from
the KSC Orbital Transfer Vehicle Launch Operations study final report dated March 7,
1986. The flow depicted is the flow used for the OTV Launch Operations analysis. The
details of the flow can be found in Volume 3 of 5, Appendices A and B with a manpower
and time summary in Volume 5 of 5, Appendix A of the KSC study final report. Some
modifications were made to the KSC timelines to make them compatible with STAS

modeling and operation concepts. These modifications are noted as they occur.

6.2.1 CLV/OTV Timeline and Manpower Estimates

Figure 6.2.1-1 shows the STAS developed timeline/manpower estimate chart for a
RFLY-PPA CLV modified to indicate and highlight the OTV processing timeline. The
data (cost per flight, timeline, and RFLY-PPA fleet sizing) shown is that for a RFLY-
PPA at a nominal launch rate of 40 per year. The time is in 8 hours shifts. The P/A
module is that associated with the launch vehicle. The RFLY-PPA cargo processing
concept is to encapsulate the cargo in a Large Payload Integration Facility (LPIF) and
then mate the encapsulated payload to the launch vehicle in the Stacking/Integration
Building (SIB) prior to transferring the integrated vehicle to the launch pad. Encapsula-
tion includes integration of the OTV with its payload and the launch vehicle payload
adapter, interface verification and installation of the payload fairing. Upon completion
of the encapsulation, access to the OTV and its payload is limited to that which can be
accomplished through fairing access hatches.

The OTV timeline associated with the RFLY-PPA launch vehicle is:
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a. Refurbishment - 23 shifts,

b. Encapsulation - 19 shifts,

e. Payload Mate - 10 shifts, and

d. Launch Pad Operations - 21 shifts for a total of 73 shifts.

6.2.2 STS I Timeline and Manpower Estimates

Figure 6.2.2-1 shows the STAS developed timeline/manpower estimates chart for an
RFLY-ROI type STS II which is used to perform recovery of the OTV. The OTV in this
case is either 5 OTV P/A modules or 2 stages. The operations take place in the Orbiter
Processing Facility immediately after the Orbiter has landed and safed. The OTV
removal concept is similar to existing STS concepts using a strongback to transfer the
"OTV" from the payload bay to a transportation canister. The transportation canister
concept is identical to the existing STS MMSE canister and transporter concept. One

shift has been allocated for the removal operations.

6.2.3 Basis for Timelines

The KSC Operations Study activity called "OTV Preparations", with its nine tasks,
(see figure 6.2-1) is deemed comparable to what STAS called "Assembly and Checkout".
The 358.5 hours divided by 8 equals 45 shifts which transfers the timeline into
equivalent whole number shifts (consistent with STAS modeling). "First time"
processing of all GBOTV configurations was assumed to be equal in duration. Because
"first time" processing occurs only once during the life of a reusable vehicle this
timeline is not used for modeling the turnaround of a reusable OTV. A 90% learning
curve for six processings was used to arrive at an "operational" processing timeline for
an expendable OTV. The 90% learning curve is very consistent with past learning
experience. The "six processings" is a conservative number judged to be a first year's

effort. The average processing time is found by using the following equation:

Processing Time = (Duration of "First Time")(6)In 0.9/Ine = (358.5)(6)-0.152 = 273
hours = 34 shifts

Theoretically, at an annual launch rate of 34 per year, 34 processings would be
reached in the first year and (358.5)(34) = 210 hours or 26 shifts for the 34th processing.
The choice of "6" represents a more realistic "ramping" during the first year. (The IUS
is an operational upper stage. The current IUS launch support contract is for a

capability to process 4 vehicles per year. The effort to develop a capability to process 6
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vehicles per year is being studied. The total number of IUS vehicles processed to date is
four - not including Pathfinders.)

The timeline delta for an expendable GBOTV being processed on a Cargo Launch
Vehiecle is based on (a) OTV Preparation vs Refurbishmerit (34-23=+11 shifts) and (b).no
recovery (-1 shift) for a total delta of +10 shifts.

The KSC Operations study activity called "OTV/SC Integration", tasks 10 through
14, is part of the STAS "Payload Encapsulation" for the CLV. It is followed by the

installation and closeout of the payload fairing. The resultant payload encapsulation

time is:
Tasks 10 through 15 79 Hours
Install and Align Fairing 24 Hours
Install Nose Cap 8 Hours
Closeout Fairing Ordnance 8 Hours
Remove Access Platforms .16 Hours
Remove Payload from Cell 8 Hours
Transport to SIB 8  Hours
TOTAL 151 Hours or 19  Shifts

The KSC study "Launch ‘Operations" tasks are applicable to integration at the
launch pad with a launch vehicle having an orbiter with an internal payload bay (existing
STS procedure). The timeline used in this analysis is that applicable to the STAS Cargo
Launch Vehiele (10 + 21 = 31 shifts) and is extracted from STAS.

"Mission Operations" was considered a function of the Control Segment, not the
Ground Segment, in STAS. GOCM did not model mission or flight operations other than
to insert a time delay for fleet size determination. The OTV cost modeling is kept
consistent with the STAS cost modeling.

The KSC study, "Recover the Vehicle" function included tasks accomplished during
the Orbiter flight which also were not considered appropriate to the Ground Segment.
Task 31 "Remove OTV from Orbiter" is deemed a funetion of the OTV Ground Segment
and is equivalent to Recovery - 7 hours or 1 shift. Tasks 32 and 33 were noted in the
KSC study as "Subject to deletion for operational efficiencies" and having zero timeline.
STAS concurred with a caveat that the tankset design must eliminate the tank venting
and purging requirement. STAS also considered the tasks, if required, as part of the
refurbishment function.

The KSC study "Maintenance/Refurbishment" function is equivalent to the STAS

"Refurbish Upper Stage" function if the following adjustments are made:
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a. Add a new task to "Recertify OTV Tankset", (This task is currently undefined but is
conceptualized as a non-destruct inspection requiring no more than 40 hours to
accomplish.)

b. Include a time for task 36, "Unplanned Maintenance", plus task 37, "Modifications",
equal to the timeline for task 35, "Planned Maintenance"

e. Include tasks 6, "OTV Integrated Operations", and 7 "OTV/CS-G Systems Tests" as

being required after the completion of the unplanned maintenance and modifica-

tions, and
d. Delete task 39, "Store for Call-up”.

The certification of the OTV tankset is an area of uncertainty which could have a
wide range of impact on the reusable OTV refurbishment timeline.

The resultant Maintenance/Refurbishment timeline is:

Tasks 34 through 38 . 74  hours
New Task Recertify OTV Tankset 40 hours
Tasks 6 and 7 66  hours
TOTAL 180  hours or 23 shifts

6.2.4 Timeline Analysis Summary

The results of integrating the KSC study timeline analysis with the STAS analysis
are shown in figures 6.2.1-1 and 6.2.2-1. For the sake of clarity, the OTV processing
timeline is summarized as follows:
a. OTV Assembly and Checkout

1. First time only for reusable vehicle, or 45 shifts

2. "Operational" expendable vehicle 34  shifts
b. Refurbish Upper Stage 23  shifts
c. Payload Encapsulation 19  shifts
d. Payload Mate 10  shifts
e. Launch Pad Operations 21  shifts
f. Recovery

1. Reusable Vehicle, or 1  shift

2. Expendable Vehicle 0 shifts

TOTAL

1. Reusable Vehicle 74  shifts

2. Expendable Vehicle 84  shifts
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6.3 GROUND TURNAROUND FACILITIES
The OTV ground turnaround facilities include an OTV Processing Cell, an

Integration Cell, recovery facilities and support facilities. The OTV processing cell is

the faecility where the OTV is assembled, refurbished and checked out. It includes the

support equipment for subsystem checkout and integrated system test. The integration
cell in the RFLY-PPA system is the LPIF where the OTV is integrated to its payload and
the payload fairing is installed. The number of cells required is determined by the
mission model maximum vehicle processing rate (flights per year). As in STAS, a single
shift year is 5 shifts/week x 52 weeks or 260 shifts. The OTV maximum equivalent

vehicle processing rate is determined to be 34 processings per year. The processing of a

two- stage OTV is considered equivalent to two single-stage processings.

The number of OTV Processing Cells required to support 34 processings per year is
determined as follows:

a. FOR THE REUSABLE GBOTYV 260/23 = 11.3 vehicle processings per year on a single
shift, 5 days per week basis. A three shift operation results in a capability to
process 3 x 11.3 = 33.9 vehicles per year (marginal capability with one cell). Some
additional processing capability is desireable to accommodate the periodic assembly
and checkout of a replacement vehicle ,

b. FOR THE EXPENDABLE GBOTV 260/34 = 7.6 vehicle processings per year on a
single shift, 5 days per week basis. A three shift operation results in a capability to

process 3 x 7.6 = 22.8 vehicles per year (two cells are required).

In both configurations, a single cell does not provide the required capability to
support 34 processings per year and 2 cells are provided with multiple shifts in each cell.
Two cells satisfy the processing timeline plus allow some time for cell maintenance,
reconfiguration and calibration.

The number of Integration Cells is influenced by the launch vehicle timeline from
start of payload mate to launch. (Cell configuration is maintained until the payload is
launched.) For the STAS RFLY-PPA vehicle processing on a three shift, 7 days/week
basis, the delay translates to 7.4 shifts on a single shift, 5 days/week basis. The
translation is computed as follows: (10 + 21 shifts)/ (3 shifts per day)(7 days per week) x
(5 shifts per week) equals 7.4 equivalent cell shifts. For any GBOTV configuration,
260/(19 + 7.4) = 9.8 vehicle processings per year on a single shift, 5 days per week basis.
A three shift operation results in a capability to process 3 x 9.8 = 29.4 vehicles per year.

Again, 2 cells with multiple shifting must be provided.
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While the maximum number of vehicle processings determines the required number
of cells, the largest vehicle determines cell size. Thus, while a single cell may
accommodate a family of OTV's it is sized to accommodate the largest of that family of
vehicles. Note that we have large and small OTV's for almost every system concept.

Recovery facilities include only those equipment and accommodations unique to the
OTV. The actual facility is the Orbiter Processing Facility which is part of the launch
vehicle system.

Support Facilities might be available at an existing launch site. The STAS GOCM
assumed that none were available and developed a support facility cost reflective of
vehicle launch rate. This analysis also includes a support facility cost to account for the
following support facilities: '

a. warehousing,
b. office/admin facilities
c. shops/laboratories, and

d. handling and transportation facilities

6.4 GB OTV FLEET SIZE

An OTV fleet size based on launch operations has meaning only for reusable
configurations. Fleet size is determined by the number of units required to support the
flight rate and is dependent on the turnaround timeline, the number of parallel
processing facilities and the mission scenario which includes the flight timeline.

Thirty-four flights per year indicates 1.5 weeks between flights. The P/A modules
for the partially reusable OTV (GBPRS) are recovered in groups of 5. The fully reusable
OTV (GBFRS) is recovered in groups of 2. Figure 6.4-1 indicates the time relationship
between OTV flight rate, recovery scenarios and turnaround timeline for each OTV
configuration. The resulting maximum fleet size is: 7 vehicles for the GBPRS concept
and 4 vehicles for the GBFRS concept. In both cases the schedule margin is so close
that if we were to maintain the maximum launch rate of 34 per year for a very long
period of time, additional vehicles are required for contingencies. The recovery
scenarios at the given launch rate eliminate the impact of parallel facilities. A

minimum of two vehicles is theoretically always available for processing.
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6.5 OTV LAUNCH OPERATIONS COSTS

6.5.1 Non-Recurring Costs

Consistent with ground segment costing methodology developed by STAS, the
nonrecurring costs associated with launch operations are the facility acquisition costs
adjusted to include the cost of design, ground support equipment, and activation.
Facility acquisition costs are in 1986 dollars. The adjustment factors: a.Design
(Architect and Engineer Fees): 10%
b. Ground Support Equipment (GSE): 12%
ec. Site Activation: 32%

The design and GSE costs are percentages of the facility acquisition cost and are
additive. The site activation cost is a percentage of the sum of the other three. The
total adjustmeht factor equals (1 + 0.10 + 0.12)(1.32) = 1.6104.

‘The OTV Processing Cell acquisition cost is based on the size of the OTV (length,
diameter and weight) using the STAS developed cost estimating relationship. The OTV
portion of the LPIF acquisition cost is based on the size of the combined OTV and
payload. The total LPIF cost is based on the maximum fairing size associated with the
launch vehicle. The acquisition of two cells is estimated to cost 1.9 times the cost of
one cell due to economies of scale, common utility connections, some sharing of areas
and a common design. Allocation of the LPIF acquisition cost between the launch
vehicle system and the OTV, is admittedly, quite arbitrary.

The Recovery System acquisition cost is estimated to be the same for all
configurations and is fixed at $1.0 million. It is assumed that the launch vehicle system
provides the facility and the hardware to remove return cargos and that the returning
OTV's are compatible with those accommodations. The resulting Recovery System
acquisition cost is very minor including only unique equipment required by the OTV.

Support Facility acquisition cost is factored via a cost estimating relationship
resident in GOCM from direct manpower costs. The relationship makes support facility
acquisition costs sensitive to the launch rate and proportionate to the annual recurring
cost. An increase in "work" results in an increase in facilities to support that "work".
No evaluation is made of nor credit given for existing facilities.

OTV physical characteristics which "size" the processing facilities and, thus,
determine the facility acquisition cost are given in figure 6.5-1 for each configuration

analyzed. The weight includes the weight of the Airborne Support Equipment.
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Figure 6.5-2 lists the nonrecurring cost for each configuration analysis by facility
item and total. Comments on the cost data shown include:

a. It is assumed-that any ground processing of a SBFRS vehiele occurs infrequently and
is accomplished in the same facility as the tanker processing.

b. The SBPRS has an expendable tank set. It is assumed that the tankset is integrated
with the payload as part of the ground processing.

e. The payload module associated with the "GBEXP with aeroassisted payload module"
is costed as a payload (has its own process/storage facility) except for the recovery
system. The need for the recovery system is deemed to be a characteristic of the
OTV configuration and not a characteristic of the payload module.

d. "Support Facilities" cost for the expendable configurations assume that the vehicles
are manufactured at a steady rate and that "pipeline inventory" facilities are

required to accommodate mission model launch rate variances.

6.5.2 Annual Recurring Costs

The launch operations recurring costs are defined as the manpower costs associated
with processing the vehicle and are calculated on an annual bases (versus a per flight
basis). The "real world" contracts for a launch processing capability to process a given
number of vehicles over a given period of time. The per flight cost is then derived by
dividing the total cost of the capability by the number of processings. The STAS
developed costing methodology is modeled on this perception of the real world. The
mission model determines how many processings per year and GOCM provides the
combined fixed and variable cost of providing that processing capability.

The manpower required for a processing is divided into three categories:
a. direct,
b. facility, and

¢. support.

Direct manpower is defined as that manpower directly involved in the vehiecle
processing and is a funection of launch rate and processing tasks. Facility manpower is
defined as that manpower involved in the operation and maintenance of the vehicle
processing facilities and ground support equipment. It is a function of facility
acquisition cost. Support manpower is defined as that manpower involved in (a) the
operation and maintenance of general purpose facilities and equipment ineluding ground
support systems, shops and laboratories; (b) manage-ment support including finance,

personnel, administration and safety; (e¢) sustaining engineering; and (d) other support
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services including logisties, document production and control, data storage, and other
miscellaneous services. Support manpower is factored from direet manpower using
ratios derived from the Rockwell International "Proposal for Shuttle Processing

Contract (SPC)" staffing proposal. The derived ratio for support manpower is:
Support Manpower = Direct Manpower x 0.659

The manpower costs are priced at: $32 per hour x 2080 hours = $66,560 per man per
year. The pricing is in 1986 dollars and includes the personnel benefits package. No
fee, contingency support or government support is included for this study. (STAS
included a factor of 41% for unmanned systems and 42% for manned systems.)

Figure 6.5-3 lists the annual recurring costs for each OTV configuration. It includes
a manpower headcount for each manpower category and a cost per flight number. The
government provided data for existing upper stages is listed for comparfson purposes. It
must be noted that existing upper stage data is for an earlier vintage vehicle at a much

lower launch rate.

6.5.3 Cost Summary )

The launch operations cost data presgnted was developed using a cost modeling
methodology (GOCM) developed by Boeing in STAS. GOCM has been accepted as a valid
tool for ground segment cost comparisons between systems. It has drawbacks similar to
other parametric cost models and lacks an extensive data base. However, as a
comparative tool it does allow some valid observations:

a. Technology advancements can lower annual recurring costs. The payoff from the
technology becomes most noticeable at higher launch rates. The effect of
technology on life cycle costs may be considerable different when one includes the
nonrecurring cost of developing the technology. This nonrecurring technology
development cost when coupled with a low usage rate may preclude development of
the technology.

b. The derived maximum annual processing rate of 34 is very high when compared to
past or existing upper stage processing requirements. (The Integration and Launch
Support contract for IUS was for an annual processing rate of 4.) The higher
processing rate accelerates the effect of learning. The learning effect is reflected
in the cost comparison data.

ec. The actual costs can be drastically different from (greater than) projected

recurring costs if the system usage does not attain the projected rate. Manpower
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and facilities must be in place prior to the commencement of launch operations.
The launch operational system must be suitably exercised in order to gain the

required experience and learning for a truly efficient system.

This cost analysis assumes that all the "good" things have happened. It is a
comparative analysis between vehicle configurations under derived operational

scenarios. It is not a bid proposal.

6.6 SPACE BASED OTV OPERATIONS

The basing of an OTV at a Space Station requires launch operations for which very
limited history or experience exists. The KSC OTV Launch Operation Study
accomplished a more detailed analysis of space based launch operations than done during
previous OTV studies which concentrated on vehicle and system performance
characteristics. The data from the KSC study is used to update previous study timeline

and cost data.

6.6.1 Space Operations - Turnaround
Figure 6.6.1-1 shows a typical Space Based OTV flow. It is extracted directly from

the KSC Orbital Transfer Vehicle Launch Operations Study final report dated March 7,

1986. It is the flow used for the timeline and cost data update. The details of the flow

can be found in Volume 3 of 5, Appendix C and D with a manpower and time summary in

Volume 5 of 5, Appendix B of the KSC study final report.

Adjustments to the flow necessary to make it compatible with the analysis and
costing methodology of this study are:

a. Deleted task 7, "OTV/CS-G Systems Test" - the task was identified in Volume 2 of 5
of the KSC study as being a "first flow" task only. That identification did not get
transferred to the typical flow. We concur with the deletion and timeline the "OTV
Preparations" task at 33 hours serial time with 66 manhours of IVA and 198
manhours of ground control station time.

b. Deleted tasks 25 through 28, "Mission Operations" - Mission Operations are costed
separately from Launch Operations in this study.

c. Estimated that the effort for tasks 36, "Unplanned Maintenance" plus 37,
"Modifications" equaled the effort of task 35, "Planned Maintenance". This is
consistent with the adjustment made to the "Maintenance/Refurbishment" timeline
of the GBOTV flow. It results in a Maintenance/Refurbishment timeline of 51

serial manhours with 98 hours of IVA, 8 manhours of EVA and 18 manhours of
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ground control station time. Figure 6.6.1-2 summarizes in tabular form the space
operations "Turnaround" functions and the time and manpower effort involved in

each after the adjustments are made.

Figure 6.6.1-3 translates the turnaround data into a calendar day timeline based on
a single shift, 8 hour per day; 7 day per week work schedule. The single shift timeline
gives a theoretical maximum processing capability of 365/28 = 13 launches per year.
The same people are assumed to perform the "Mission Operations" function as perform
the other OTV functions requiring inclusion of that time bar. The "Missions Operations"
timeline of 2.5 days (60 hours) is based on the KSC study timeline of 18 hours adjusted
by mission profile data. It may be optimistiec. In the real world, the calendar day

timeline for mission operations could vary considerably with mission requirements.

6.6.2 Space Operations - Cost Summary

For costing purposes the processing capability of a single shift space operations is
assumed to be 12 processings per year. To meet the mission model maximum rate of 34
requires a three shift operation. This implies a 9 man crew at the Space Station
essentially continuously processing SBOTV's.

No differentiation is made between processing the SBPRS or SBFRS. There is
some. However; the level of design detail of the Space Station, the OTV's, and the
supporting equipment does not make a valid differentiation possible. The KSC study
considered a "generie" OTV as does this analysis. The differentiation in this analysis is
between a space based or ground based operating concept. Should it prove necessary to
differentiate between a SBPRS and a SBFRS turnaround;

a. The details of the tanker to Space Station interface and propellent transfer
methodology must be developed:

b. The interface details between the tankset and the P/A module need to be defined;

c. The extent of Space Station automation and the use of artificial intelligence needs
to be investigated; and

d. Reusable tankset recertification requirements need to be developed.

Figure 6.6.2-1 summarizes the manpower requirements and the cost of processing
an SBOTV. The numbers reflect launch operations/turnaround effort only. The
significant fact which must be extracted from this data is the comparative cost of
manhours at the Space Station to those on the ground. With automation and robotiecs it

is possible to substitute IVA for EVA. However, until the cost of maintaining man in
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space decreases at least tenfold, the space operations will just not be cost competitive
with ground operations. Any competitive edge for a SBOTV will need to come from

some other cost element.

6.7 OTV LAUNCH OPERATIONS SUMMARY

The analysis of OTV Launch Operations as with ::;my other human operations is an
ongoing, continuous process. Technology will be developed. New requirements will
drive new methodology. To summarize an operation at any point in time is to merely
provide a snapshot of where the operation is and in what direction it might be going.
The same is true about the following:

Launch operations (the methodologies, facilitization, degree of automation, etc) are
highly dependent on the launch rate. Automobiles did not become affordable until the
institution of the "production line". But; for the production line to be economical, there
needed to be a volume requirement and a market for that volume. This analysis assumes
that OTV operations will move in the direction of a production line operation. The
current upper stage launch operations are based on annual launch rates of approximateiy
four with a high percentage of "first time" processings. The per flight processing costs
indicated by this analysis are baseed on a scenario with a high annual rate and many
repetitive processings.

Repetitive processings of space qualified cryogenic fuel tanks is an entirely new
"ball game". The only experience base involves the STS Orbiter fuel cells. Compared to
the proposed OTV tanks, they are small dewars. Reusable hydrogen tank insulation and
the flight recertification requirements for large tanks are but two areas of technology
which need to be developed.

The Cargo Launch Vehicle "payload encapsulation" concept minimizes total ground
processing costs by minimizing the "serial impact" to launch vehicle processing.
Payload encapsulation also limits access to the payload (substitute OTV). For the
RFLY-PPA vehicle timeline shown, the encapsulation occurred ten or more days prior to
launch. That is not too much of a departure from the current STS Orbiter timeline which
closes the payload bay doors 8 to 9 days prior to launch. It is more of a departure from
existing Titan timelines which integrate the cargo to the launch vehiele on the launch
pad and are much more accommodating to a late access to the cargo. While not a "show
stopper", the implications on vehicle and payload design should be understood.

Space based OTV processing is estimated to be 6 times more expensive per flight
that any ground based OTV processing. The major cause is the cost of maintaining the

man in space. The manpower cost cannot be just "wished" away by substituting
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artificial intelligence and automation. The development cost needs to be considered and
the cost of maintaining the hardware and software is not to be treated lightly. This
analysis does not include any specific cost for hardware or software development
(considered part of Space Station accommodations). Neither does it include the cost of
any hardware or software maintenance (considered "wrapped" into the per hour cost of
EVA and [VA).

Further assessment of automation and artificial intelligence for space based OTV
processing is warranted. As the technology develops, its application must be assessed.
Automation and artificial intelligence may facilitate ground based production line OTV
processing. They are "enabling" technologies for space based production line OTV

processing.
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7.0 MISSION CONTROL

7.1 GENERIC MISSION CONTROL FUNCTIONS

The generic functions which must be performed by the mission control system
(MCS) for any vehicle class are shown in figure 7.1-1. The flight assignment function
assesses mission feasibility, performs advanced mission planning, and assigns payload to
a specific flight. It is the initial interface point for payload users. Subsequent payload
user coordination is with the mission integration function whose responsibility includes
the development of the detailed requirements definition for each OTV mission.

The major portion of the MCS activity occurs in the premission implementation
functions which includes flight planning, data load preparation, and premission simula-
tions. Flight planning performs conceptual and detailed mission design. In addition to
mission design, propellant loading and flight mission rules are developed. Data load
preparation uses the mission design to develop and validate the flight vehiecle and flight
control room software mission data loads. Stand alone and integrated system simulators
are performed to assure flight readiness of personnel and procedures. Real time mission
support accomplishes real time mission monitor and controi inciuding any real time
mission replanning required. Post flight support includes flight evaluation and reporting

including repair actions recommended for the next flight.

7.2 MISSION CONTROL COST DRIVERS

The major cost drivers for the mission control system are summarized in table 7.2-
1. The first three items are highly interrelated since mission complexity and mission
duration are related to the degree of reusability. For example, the expendable OTV
mission is the least complex since the mission is one way (plus disposal of the spent
stage). In addition, the mission is of shorter duration, nominally, because of the one way
trip. Mission complexity significantly impacts the flight planning, data load
preparation, and simulation and training functions. Mission duration impacts these same
functions plus the additional cost of the mission communication and tracking services
required to support the longer duration missions.

Manned missions are more complex missions requiring manned proficiency training
and additional communications and tracking costs to support the higher data rates
(voice, video, and crew systems data) of the manned mission. The use of multiple
mission control centers insure higher nonrecurring and recurring costs to develop and
staff them. The level of security required to be supported by the MCS similarly affects

nonrecurring and recurring costs. The next 3 sections discuss how these MCS functions
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have fncreased complexity as the degree of reusability and manned missions are

considered.

7.2.1 Expendable Orbit Transfer Systems A

The expendable orbit transfer systems are depicted in figure 7.2-1. The mission
control concept for an expendable OTV is the simplest of the OTV MCS concepts. The
flight planning functions are primarily concerned with the exoatmoshperic orbit transfer
mission and the communications coverage required to support the mission. The vehicle
data load preparation considers the predeployment orbital operations such as navigation
updates and the orbit transfer for a short duration mission. Flight control is also the
straight forward vehicle monitor and control approach. Trajectory replanning options
are fewer since only the outbound transfer and vehicle disposal must be considered.
Simulation and training must be conducted for only the flight controllers for the less
complex mission. The communications and tracking elements are shown and include the
TDRSS (to about the year 2000) and remote tracking stations for coverage at altitudes
higher than that provided by TDRSS.

7.2.2 Unmanned Reusable Orbit Transfer Systems

For mission control of unmanned reusable orbit transfer systems, figure 7.2-2, the
return mission to LEO from GEO adds additional complexities. The major differences
between this concept and the expendable OTV system are shown in the boxes in figure
7.2-2. Flight planning must now include the return leg of the mission, with its
aerobraking maneuver, and rendezvous with the Space Station for space basing or with a
down-cargo vehicle for ground based concepts. The data load verification for the flight
software is extended to a much longer mission duration and flight control and
communication and tracking are extended to cover the additional mission operations and

duration.

7.2.3 Manned Orbital Transfer Systems

The manned mission adds the additional mission complexities of crew activity,
mission abort modes, and the increased volume of data transmitted to the ground to
support the mission, figure 7.2-3. These data include voice (down link and up link),
video, and data unique to manned systems. The simulation and training functions must
now consider manned flight proficiency and unique training which is specific for each
manned mission. The flight planning for consumables must also now consider non-

propulsive consummables for additional electrical power and the crew.
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7.2.4 On Orbit Communications and Tracking Requirements

The communications and tracking system to support OTV space operations must
consider not only the OTV requirements but also the orbital operations of the manned
and unmanned launch vehicles as shown in figure 7.2-4. The communications link
requirements shown support manned OTV operations, as well as providing payload data
through the OTV communications subsystem, while the payload is attached to the OTV.
This is necessary since most payloads will not deploy appendages (such as solar arrays
and antennas) prior to separation from the OTV at the payload operating orbit. Also
shown in figure 7.2-4 are the communications links between the ground based centers

which support the OTV and payload operations.

7.3 GENERIC MANNED FLIGHT MISSION CONTROL CENTER FOR POST 2000

Based on analysis of present mission control centers and their operations, the
results of STAS trades and analyses, and projections of available technologies, an
integrated approach to performing the mission control fuctions was developed as
illustrated in figure 7.3-1. This integrated approach ties together the various MCS
functional areas through the use of a master data base management system. This
central data base provides for a production-oriented operation with minimum paperwork
development and flow. The odtputs of each major functional area are available to
subsequent users directly from the DBMS (data base management system) without
intervening paperwork steps. For example, flight planning outputs are directly available
to data base preparation.

In addition, projected advanced technology applications are shown in each
functional area. The concept shown is applicable to the post 2000 time frame. Not all
technologies shown will be available in 1995 but a phased technology implementation is
proposed to eventually achieve the lower cost per flight available with the full

technology implementation shown in figure 7.3-1.

7.4 MISSION CONTROL TECHNOLOGY

Technology availability and implementation analyses yielded two groupings of
technologies as indicated in table 7.4-1. Those labeled as medium technologies are
those whieh are available by 1990 for use in a mission control center (MCC) with a 1995
IOC. Those labeled as High Techhology have a 1995 technology readiness and could be
used in a MCC with an IOC of 2000. A trade was performed in the STAS to determine if
a MCC with an IOC of 1995 should be upgraded when the high level technology became
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available. The results showed that the investment cost for the upgrade could be paid
back, with the cost per flight savings after upgrade, in less than 5 years at flight rates
equivalent to those used for this OTV study. The nonrecurring costs and recurring costs

per flight shown later reflect, in each case, upgrade of the 1995 IOC control centers.

7.5 MCS FUNCTIONAL DIAGRAM

Figure 7.5-1 shows the interrelationships between the MCS functional areas when
the premission, realtime control, and post flight analysis functions are performed.
Shown are each major MCS function and the major items (or data products) which flow
to each successive functional area. The functional flow shown is essentially time phased
right to left. Also shown are the relationships to payload users, the Launch Control
Center (LCC), and the Communications and Tracking System (CTS). Sustaining
engineering (both systems, software, and vehicle systems is required during the

operational phase).

7.6 MISSION CONTROL COST SUMMARY

The estimated nonrecurring and cost per flight for the candidate OTV concepts are
so shown in Table 7.6-1. The initial implementation costs reflect 1995 MCS IOC using
technologies available in 1990. The cost of the upgrade to achieve the lower cost per
flight achievable with the advanced technologies is also shown. Note the differences in
the cost per flight for each vehicle class before and after the upgrade. Note also that
the expendable vehicles, due to low mission complexity and duration, have the lowest
cost per flight. The fully reusable vehicle cost per flight are the next highest, with the
partially reusable system being the highest. In our analysis of ground and space basing

impacts to MCS costs, we could find no significant differences.

7.7 MCS SUMMARY

The mission control system findings are summarized in Table 7.7-1. of course,
mission complexity and duration are the major cost drivers. MCS cost per flight will be
lowest for expendables because of no requirement for vehicle control after mission
completion. The partially reusable vehicle will have the highest MCS costs because of a
greater number of items to be controlled during reentry; hence a greater mission
complexity. It was found that, though significant, MCS costs were not diseriminators

between concepts.
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8.0 LAUNCH AND RECOVERY IMPLICATIONS

This section presents a summary of the OTYV launch and recovery impact as brought
about by variations in the degree of OTV reusability, the Rev. 9 mission model, and use

of an unmanned CLYV.

8.1 LAUNCH MASS

A major factor in the cost comparison of the candidate OTV concepts is that
associated with launch cost. The key contributor to this parameter is the mass that
must be launched to accomplish the mission model. A comparison of the startburn
weight to perform typical delivery and roundtrip missions is presented for the GB and SB
OTV options as well as the total mass to accomplish the mission model.

Performance for the GB OTV's is shown in Figure 8.1-1. In the case of the delivery
missions, the startburn weight involves the stage and a payload weight of 14.6K lbm..
The indicated startburn weight difference also occurs for delivery missions involving
payload weights as low as 10 K lbm. The expendable stage provides nearly 30 K lbm
advantage over the fully or partially reusable concepts. This large margin occurs
primarily because (1) no GEO deorbit delta V is necessary; (2) no aerobrake provisions
are necessary; and (3) no configuration compromises are necessary to allow the stage or
modules to be recovered including on-orbit loiter provisions and making the stage short
enough to allow two to be returned in one STS flight as in the case of the FRS OTV
concept. It should also be noted that over 80% of the missions in the model are delivery
only. Round trip mission startburn weight however shows the FRS to have nearly a 40 K
lbm margin over the expendable option. In this type of mission, the FRS is using
aeroassist to return back into LEO whereas the expendable concept uses one stage to
reach the mission orbit and another stage to return the payload to LEO via propulsive
means. Use of an expendable stage to reach the mission orbit and an aeroassist module
to return the payload only had nearly the same startburn weight as the FRS concept.
The PRS concept was heavier than the FRS design primarily because two aerobrakes are
involved (one for the P/A module and the other for the payload) and each of these
brakes used a rigid TPS (due to heating rates) which is heavier than the ballute of the
FRS concept.

SB OTV performance is presented in Figure 8.1-2 along with the GB FRS for
relative comparison. In the case of the delivery mission of non-DoD payloads, the SB
FRS requires the lowest startburn weight. The SB PRS is heavier primarily because its

propellant tanks are launched loaded (or partially loaded if the mission dictates).
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Accordingly, the tanks are heavier than if designed only for mission loads as is the case
for the SB FRS concept that uses a propellant tanker to deliver propellant from Earth to
the Station's propellant storage tanks. The GB FRS is approximately 10 K lbm heavier
than the SB FRS because (1) the tankage is designed for Earth launch and (2) a non-
optimum (weightwise) tank design (toroidal LO9) was necessary to make the stage short
enough so two could be returned in one STS Orbiter. Roundtrip missions also involve
less startburn weight when using the SB FRS. The SB PRS gets considerably heavier not
only because of the tank design as discussed previously but also because two aerobrakes
are involved as was discussed in the GB OTV performance paragraph.

DoD missions are all delivery type missions but a number of these involve medium
or high inclinations. GB OTV's can be launched into or very near these inclinations
whereas SB OTV's based at a 28% deg inclination Space Station must make a large plane
change (Note: as discussed in Section 5.1, one station at 28% degrees was more cost
effective than having two stations with the second at 63 degrees). In the case of the
medium inclination synchronous missions, there is little difference between the three
OTYV options. Although the GB FRS requires much less plane change, the design penalty
of toroidal tanks and on-orbit loiter capability both necessary to enable return of two
stages in one Orbiter resulted in a startburn weight essentially the same as the SB FRS
concept. The GB FRS shows a significant weight advantage for the high inclination
4000 nm orbit mission. This occurs because very little propellant is required to reach
the altitude whereas the SB OTV options requires a plane change of over 60 degrees.

A comparison of the total launch mass associated with each OTV concept
investigated in shown in Figure 8.1-3. The mass includes all stages, payloads, and
propellant tankers required to perform the model. The expendable concepts show a
significant advantage over the partial or fully reusable systems because the majority of
missions are delivery only. For the average delivery mission, the expendable vehicle
provides a 30K lbm and 20K lbm advantage over the reusable GB and SB OTV concepts,
respectively. This advantage occurs because no propellant is required for GEO deorbit
and no aerobrake is required for Earth orbit capture. On the relatively few large
roundtrip missions, the GB reusable system has a 39K lbm advantage over the all-
propulsive expendable concept and 4K lbm over the expendable with payload aeroassist.
The reusable SB option has an even greater performance advantage over expendable

options for the roundtrip missions.
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8.2 RECOVERY OF OTV ELEMENTS

Both the reusable GB and SB OTV concepts have elements requiring Earth return.
In the case of the GB OTV, the whole stage is involved while the SB OTV has a
propellant delivery tanker that can be reused although its flight rate is only about one-
third that of the GB OTV. Because the reference CLV does not have cargo return

capability, other means must be used to return the reusable elements.

8.2.1 Recovery Options and Selection

The recovery options considered included: (1) add a reentry glider to the CLV;
(2) use a 2 stage fully reusable CLV, and (3) STS/I/II flights that would take up delivery
only cargo and then be available to return OTV elements. v

The assessment of using a glider with the baseline partially reusable CLV to return
hardware is summarized in Table 8.2-1. Specific design characteristics of such a
concept were not available for this study. Instead we estimated a glider weight based
on the ESA Hermes concept. When the glider was sized to return an empty OTV and a
crew module (GEO manned sortie mission) a dry weight (no payload) of between 55K Ibm
and 60K lbm resulted leaving 90k lbm for the mission payload of the CLV. The launch
requirement associated with the manned sortie mission is estimated at 105K lbm.
Accordingly, this approach was judged to have insufficient CLV payload capability. In
addition, the additional development cost for the glider would most likely exceed $2
billion and the cost per flight for such a CLV/glider would also be higher than for a
standard CLV.

A second option was to consider development of a fully reusable CLV. Such a
concept was characterized in the Reference 7 study and provided 150K lbm LEO
capability and cargo return capability in its Orbiter. The key features of this CLV
approach relative to the partially reusable approach are shown in Figure 8.2-1. In
summary, the large fully reusable CLV was found to have a higher LCC than a launch
vehicle architecture that had a 150K lbm unmanned CLV and a 76K lbm fully reusable
STS II. Accordingly, this approach was judged to be too costly.

The third option involved launching OTV elements on an unmanned CLV and have
them returned to Earth via an STS that had delivered up only cargo. The basis for this
approach is presented in Table 8.2-2. This approach was also used in the STAS study
(Ref. 7). In that analysis, it was found the STS launches to inclinations where the
majority of OTV flights would originate (28% degrees) involved both delivery and return
cargo and thus the STS would not be available for returning OTV elements. The means

used to overcome this problem was to have the STS also launch up only cargo that would
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normally be launched by a CLV. Although the launch of that particular cargo would be
more expensive than if done by a CLV there was a residual benefit in as much as fewer
CLV flights would be required for a given mission mode; and of course the OTV elements
could be returned and reused. Accordingly this approach was selected to complete the
OTV study because it had been successfully employed in the STAS study and the other

return options had substantial cost and payload capability penalties.

8.2.2 Recovery Impact on Launches and Cost

Recovery of the GB FRS involves return of two small stages on each STS flight
while only one of the large stages can be returned due to their size.

The launch impact for the GB FRS concept is summarized in Table 8.2-3. For this
example, the number of CLV flights are reduced by having STS flights launch up only
cargo normally launched by CLV's. With 24 small GB FRS stage flights, 12 STS flights

~are required and each large OTV (4 flights) required a separated STS for a total of

16 STS flights. The STS's up cargo capability resulted in reducing the number of CLV
flights by 8. The launch impact in terms of delta STS and CLV flights associated with
each of the investigated options is presented in Table 8.2-4. The GB partially reusable
system (PRS) reflects the return of the propulsion/avioniecs module. The SB FRS
concept involves return of the propellant delivery tanker. The expendable and SB PRS

concepts have no return elements.

An example of the OTV recovery cost impact is shown in Table 8.2-5 using the GB
FRS for illustrative purposes. The cost reflects the delta STS and CLV flights as well as
the launch of ASE equipment on STS's that is necessary to allow return of the OTV
elements. In the 1995 - 2001 time frame, the cost reflects use of the basic STS and
results in an annual recovery cost impact of over $§700M. In the later time frame, STS II
was defined by study groundrules to be available and with its cost per flight resulted in a
savings of $214M per year. Calculations similar to these were used for the other OTV

concepts requiring recovery and are reflected in the cost of section 10.0.
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Table 8.2-4 LAUNCH IMPACT (ANNUAL AVG)

D
GB GB EXPEND- EXPW/ SB
FRS PRS  ABLE PL/ A/A FRS
+ A STS I/l FLTS [Z= +16 +6 0 0 10.9
-A CLVFLTS [ -3 -3 0 0 5.6

<YV

PROPELLANT TANKER

WITH LOAD FACTOR OF 0.7 _
WITH LOAD FACTOR OF 0.6

SELECTED CONCEPT
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9.0 OTV CONCEPT SELECTION TRADES

This section presents a summary of the data used to determine the recommended
OTV program associated with the Phase II groundrules. The data is presented in a
sequence fhat defines the best GB OTV concept, the best SB OTV concept and finally a
comparison of these winners to determine the preferred OTV for the baseline analysis of
the Rev. 9, Scenario 2 mission model. Prior to making the overall assessment of the
options consideration is also given to sensitivities involving Scenario 2 and findings

associated with mission model scenarios 1 and 5.

9.1 GROUND BASED OTV SELECTION TRADE

Three major ground based (GB) OTV concepts are evaluated. These include a
reusable system, partially reusable system, and expendable system with the latter
having two options. Each concept involves a delivery mission configuration and a
roundtrip mission configuration.

The delivery mission configurations are compared in figure 9.1-1. All concepts use
L09/LH9 propellant and two advanced space engines as a result of the main propulsion
and cost optimum redundancy trades performed in Phase [. The concept defined as a
fully reusable system (FRS) has been designed to allow two of these vehicles to be
returned in the cargo bay of STS I or II and thus minimize the impaet of its launch
vehicle (the CLV) not having cargo return capability. The principal features to allow
this include a toroidal LO9 tank and a LHg2 tank with 0.5 heads. In addition, on-orbit
dormancy or loiter provisions were also incorporated to enable the vehicle to remain
flight worthy while awaiting pickup by a STS. Although these design features make for
a relatively short stage they have a significant mass penalty resulting in a propellant
requirement of 56K lbm. A ballute is used for the aeromaneuver and is expendable. The
partially reusable system (PRS) has an operating mode that only recovers the high value
propulsion and avionies elements. The low value propellant tank is expended to reduce
the impact relative to Earth return. The recovered systems are located within a
propulsion/avionies (P/A) module that also employs a rigid ablative aerobrake used in
the LEO aeromaneuver. The tankset provides the necessary propellant through the GEO
deorbit burn at which time it is placed on an atmosphere impact trajectory. The P/A
module continues toward LEO where the aeromaneuver is performed with
circularization provided by a small storable propulsion system. The additional benefit of
this concept is that the recovered P/A module is short enough that five can be returned

to Earth in one Orbiter. A new expendable OTV concept requires significantly less
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propellant than the other concepts because its mission essentially ends with payload
deployment at GEO. A small burn does occur however after deployment with the
purpose being to place the stage in a disposal orbit approximately 900 nmi above GEO.
Advanced high per'formance engines are used on this concept to stay within the payload
capability of the launch vehicle when performing the manned GEO sortie mission.

The roundtrip mission configurations for the GB FRS and PRS concepts are shown in
figure 9.1-2. The sizing mission is the manned GEO sortie involving 12 K 1b
(out)/10 K lbm (return). This mission requires considerably more propellant than the
delivery mission and accordingly the vehicle size precludes more than one being
returned per Orbiter. Accordingly, 0.7 tank heads are used to provide better struectural
efficiency. The vehicle returns to the Space Station immediately after the manned
mission and thus no dormancy provisions are included. The GB PRS also has several
changes. A larger tankset is required and a separate aerobrake module is attached to
the erew module. The operating mode for this concept is similar to the delivery mission
configuration but with the additional feature that after the GEO deorbit burn the first
element to separate is the crew module and its aerobrake module. The aerobrake
module contains a storable propulsion system, a flexible TPS aerobrake, and avionies to
enable the aeromaneuver back into LEO. Primarily because two aerobrake modules are
required by the PRS, the propellant loading is considerably higher than for the FRS
concept.

Roundtrip configurations for the expendable OTV concept are shown in figure 9.1-3.
Two options are available to perform the more demanding roundtrip manned GEO sortie
mission. An all-propulsive mode employs two larger stages. Both are expended
following propellant depletion (although the second stage could be returned to earth if
its diameter were changed to be STS cargo bay compatible). The second approach would
use a single large stage (even larger than the all-propulsive mode) and an aeroassist
module to return only the payload. The stage in this case provides the delta-V
capability through deorbit from GEO at which time the aeroassist module with its
payload separates for return to LEO. The aeroassist device for this concept provides an
L/D of 0.1 and uses rigid ablative thermal protection. As will be noted in the
comparison of the propellant weight, a considerable advantage exists for the
aeroassisted concept relative to the all propulsive concept.

The LCC summary comparison for the candidate GB OTV concepts is presented in
figure 9.1-4. Both expendable OTV options provide a significant advantage for both
undiscounted and discounted costing. The cost breakdown of the nonrecurring,

production, and recurring costs are shown in table 9.1-1. The expendable option
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provides the least nonrecurring cost because it uses the smallest vehicle and has the
simplest flight operations. Production costs for the expendable options are for the most
part shown as expendable hardware under recurring. Within the recurring cost both
expendable options show a significant advantage primarily because their savings in
launch cost (less mass) and down cargo cost more than offset their higher expendable
hardware cost. The FRS has the greatest down cargo cost because 16 STS flights per
year are required to return the stages, which does eliminate an equivalent of 8 CLV
launches (see section 8.0), but still results in a $4200 million penalty.

Based on the above cost comparison both expendable options should receive further

consideration.

9.2 SPACE BASED OTV SELECTION TRADE

The space based (SB) OTV candidates include a fully reusable system (FRS) and
partially reusable system (PRS). Again, both concepts utilize two configurations with
one sized by the 14.6K lbm delivery mission and the other by the manned GEO sortie
mission. The SB FRS configurations are shown in figure 9.2-1 along with the GB FRS
configurations to assist in understanding their differences. The SB concept uses 0.7
head tanks, comes directly back to the Station so no loiter provisions are necessary and,
in addition, has tanks sized for mission loads rather than launch loads. All of. these
factors contribute to the SB FRS requiring 9K 1bm less propellant for this mission class
relative to the GB FRS. The SB OTV concept however does require orbital supporting
elements that are not necessary for the GB options. These include hangars with
maintenance and servicing equipment and propellant storage systems at a Space Station
and a propellant delivery system to supply the propellant storage tanks at the Station.
The features of these orbital support elements were summarized in Section 5.0.

The SB PRS configurations are shown in figure 9.2-2. The overall design features

and mission operations were essentially the same as for the GB PRS concept. There are,

however, several key differences. The P/A module and roundtrip payloads will remain
on-orbit at the Space Station following a mission. Prior to each subsequent delivery
mission, a new tankset and aerobrake for the P/A module requires launching to the
Station where they can be attached to the P/A module. Although this approach
eliminates any down cargo need (e.g., propellant tanker in the case of the SB FRS
concept), it does result in a tankset designed for launch vehicle loads rather than OTV
mission loads and thus the performance is not as good. In the case of a roundtrip
mission, the launech needs also include an aerobrake module for the roundtrip payload.

For this mission type, the SB PRS concept requires over 20K lbm more propellant than

220



D180-21908-9

vevi-aLo | uos1edwoy Sy gS pue g 1-Z'6 91nbly

14 €9E=HIONI T o 14 6€ = H1I9N3T e

WE71006°0L = dOHd e WET0SV'6L = dOUd

NOILV1S OL NHNL3YH o H3119H0 A8 AHIAOD3YH e
i

=

Bl |

NOILVY 1S LV SHNVL

ANVTT3dOUHd SIYUIND3H OS1V SHY 85 e

N
o

14 €°£Z = HLONIT

14 6°6Z = HLONI1 o WE1 000'9G = dOHd
W81 00Z°LY = dOUd o . MNVL €01 1valoHOL ®
MNVL C01 Ql0SdINT e AHIAOD3YH HILI1GHO
NOILVLIS OL NHNLIY e Ol HOIHd 3DVHOLS LIGHONO @
-.-v\ i
— 4 (WE1 1 9'pL)
e———m )
— 0 \ NOISSIW
: /4 AY3IAINAA
]z a7 Q3INNVWNN
<N
1 IIII
a3asvd 3ovdS | a3svda aNNoYo
T

221

— - e @ ——




D180-21908-9

EZy¥i-ALO
voneinbyuoy SHd gS Z-¢'6 94nbl4

- 14 vy -
(2) 14981
S3INIONI |¢
AQY T
,_— \\\\ wllI/// \\\\\ ///// J
\ / N\ / A \
. . \ / 31NAON
Sg10zZL'SlL @ ) _ \/ /,
INvHE V/d @ IT1NAON hMJ _ - \ _\:Ll,lx/_ o _ . _ _— >>m.~.u'0 .
__13S$NVie v/id @ A | I\
37NAOW 8/v 371NAONW A\
37INAOW Mm3aHd @ M3HD e 009°L6 \_‘
o e \lv/ —

ITINAON MIUD HO4 IFINAOW INVHEOHIV
NOISSIN (03D A3INNVIW) dIHLANNOYH

f———— 14 E€E
SANION3 - .
‘AQY ) (] P T
SE7005°EL @ | \ /NS N\
INVYEOH3IY \/ Ve \ SHd 89
vide 3IINAOW - - ——H—- - 01 UV TIWIS
13ISHNNVL @ v/d ® 00605 N zov /N o ; 914N0J H108
7\ oSN / ‘310N

SO33IN  118HO-NO  1HDIIM
HONNVY 1 Nivw3y dOdd  39ngow <EV V *

(8/v) IMVHEOHIY V/d

13SHNVL
(QVOTAVd 039D M 9vL) NOISSIW AHIAINZA

222




D180-21908-9

the SB FRS concept. The SB PRS concept however does eliminate the cost associated
with propellant tankers and storage tanks at the Station, can use a smaller hangar, and
requires less on-orbit preparation time relative to the SB FRS concept.

The LCC summary comparison is shown in figure 9.2-3 with the breakdown provided
in table 9.2-1. Also included in these comparisons is the GB FRS to show key cost
differences. Relative to the two SB options, the FRS concept provides a 15% advantage
over the PRS in undiscounted cost and an 8% advantage when discounted. The SB FRS
has a higher nonrecurring and production cost because of its orbital support needs
(Station accommodations/operations and propellant tanker). The most significant
difference in recurring cost is that associated with launch. The FRS has a large
advantage because the launch mass of the PRS options is more like that of a GB OTV
due to its tankset design.

9.3 OTV PROGRAM SELECTION TRADES
Selection of a preferred program includes consideration of the Scenario 2 results,

sensitivities, and results from other scenarios.

9.3.1 Scenario 2 Baseline Comparison

The leading contenders from the individual GB and SB OTV comparisons included
the expendable and expendable with aeroassist payload return, a GB FRS, and SB FRS
concepts. Programmatic characteristies of the four OTV options are shown in figure
9.3-1. Each option is defined in terms of the type of vehiele and number of flights that
are involved (i.e. small stage, 2 stage, man-rated) to satisfy the key missions occurring
throughout the model. For example, in the GB FRS concept, 352 flights require the
small stage and 9 flights require a 2 stage vehicle using small stages. Use of the large
GB FRS stage involves 39 flights using a sihgle stage, 4 flights using 2 stages, and 16
flights requiring a man-rated stage.

The life eycle cost summary comparison for the four primary concepts is presented
in figure 9.3-2. It will be noted that the two expendable concepts provide the least LCC
with the reusable GB or SB OTV's being 20% higher without discounting and 28% higher
with discounting. The LCC breakdown is shown in table 9.3-1. The all expendable
concept has the lowest non-recurring and production costs because it is the smallest
vehicle; the SB OTV has the highest due to the orbital support elements. Production cost
for the expendables is collected as expendable hardware under recurring cost. Several
categories under recurring contribute to the significant cost advantage of the

expendables. In the area of launch cost which used a Shuttle type users charge policy,
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the advantage is due to the significantly less mass that must be launched. An advantage
also occurs over the SB in the area of OTV processing due to the latter's high cost per
crew hour on-orbit as well as a savings in the down cargo impact as this parameter
reflects the return of the propellant tanker for the SB OTV. The down cargo impact was
also a major advantage of the expendable over the GB FRS because all of its stages had
to be returned. The one area of significant cost penalty associated with the expendable
concept is that of expendable hardware. The expendable stages used an average
theoretical first unit (TFU) cost of $49M and a production learning curve of 85%. The
expendable option that used aeroassist for roundtrip payload return had essentially the
same LCC because its lower recurring (less expendable hardware) offset its higher non-

recurring cost.

9.3.2 Sensitivities

Several sensitivities within Scenario 2 were also considered. The results of three
sensitivities dealing with CLV cost per flight, propellant scavenging and production
learning are shown in figure 9.3-3. Over the range of the values evaluated, the
expendable system still provided the lowest discounted cost. A switeh in relative
standing did occur between the GB and SB FRS concepts when the CLV cost was reduced
to $50 million per flight. (note: this was the CLV cost value in the Boeing STAS study).
Production learning in the baseline analysis assumed a 90% curve for low rates (i.e.
reusable systems - 2 per year) and 85 for high rates (i.e. expendable OTV - 20 per year).
Increasing the high rate production learning to 88 still resulted in the expendable being
the least cost. Propellant scavenging was not included in the baseline analysis but it
appears the value would have to exceed 700K lbm per year before the SB OTV options
match the expendable option with a production learning value of 88.

Another variation suggested near the end of the study was the concept of propellant
hitehhiking. This concept involved manifesting OTV propellant tankers on CLV flights
delivering payloads but not using the full launch capability. In addition, there was the
assumption that the transportation cost for the propellant would be free. Analysis of
mission models similar to Rev. 9 scenario 2 has indicated an average of only three
flights per year to 28 1/2 degree orbits which would contribute approximately 200K lbm
of the annual 1300 K lbm requirement. Assuming this propellant is delivered free there
would be a net savings of $1.5B but still the discounted LCC for the SB OTV would be
19% higher than that for the new expendable OTV mode. In summary, if the purpose of
the system level studies is to determine what should be done, then all hardware and

operations cost associated with the concepts must be included in the decision process.
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Accordingly, the hitchhiking cost premise appears invalid because all elements are not
being included. Furthermore, even if implemented, the SB OTV concept still is not as

cost effective as the expendable OTV concept.

9.3.3 Results in other Mission Secenarios

Four other scenarios were associated with the Rev. 9 mission model. Scenario 1l
reduced the OTV flights from 422 to 292 and Scenario 3 was essentially the same as 1.
Scenarios 4 increased the flights to 667 but the major contribution to the higher number
of missions was high inclination delivery type DOD missions where the expendable
performed better than the other concepts and thus no change would be expected in the
LCC comparison. Scenario 5 involved 872 missions and several new mission categories.
Of most interest was Scenario 1 to determine the impact on the program/basing issue
and Scenario 5 because of the strong focus on a manned lunar exploration program. The
results are summarized in the following paragraphs.

The sizing missions for Scenario 1 are shown in figure 9.3-4. Very significant in this
model is the fact that there are no roundtrip missions. The majority of the delivery
missions can be accomplished with a propellant load of < 56K lbm assuming a reusable
GB OTV. There are two flights that would require more propellant, however these could
be .accomplished using a two stage vehicle. Because there were no roundtrips and the
majority of the delivery missions were < 14.6K lbm payload only the small stages for the
GB FRS, SB FRS, and expendable concepts were evaluated. The LCC comparison for the
concepts performing Scenario 1 is presented in table 9.3-2. In this Scenario, the all
propulsive expendable concept has even a larger cost savings (over 40%) compared to
the GB and SB FRS concepts. The primary reason is because there are no large delivery
or roundtrip missions and thus the launch cost savings percentage is even greater than
for Scenario 2. ' .

Scenario 5 nearly doubled the number of OTV flights relative to Scenario 2. The
percentage of roundtrip and largé delivery mission were essentially the same however
and consequently there should not be any change between the concepts in terms of LCC
relationships. Acecordingly, the expendable concepts would still look most favorable as
long as the primary'launch system was an unmanned cargo launch vehicle without cargo
return capability.

Consideration was given however to the accomplishment of the two new mission
categories namely nuclear waste disposal (NWD) and lunar surface exploration. In the
case of NWD there were 391 missions involving a 10K lbm payload to a 0.7 A.U. disposal

orbit. Analysis indicated this mission could be accomplished using the small expendable
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OTV with 30K lbm propellant capacity. This mission involved two perigee burns for
transfer out to the 0.7 A.U. orbit, 160 days of coast and a burn into the disposal orbit.
Accomplishment of the lunar exploration program using the expendable OTV

concept is shown in figure 9.3-5. This approach assumes an OTV concept that involves

an expendable mode along with aeroassist payload return. The early unmanned lunar
mission can be done with the small expendable stage that was sized for the 14.6K lbm
GEO delivery mission. To perform the unmanned surface exploration mission a new
stage would be used that is sized by the manned surface sortie mission. Such a stage
would have 95K lbm propellant capacity. This same size stage would be used for the
GEO logisties and manned sortie missions which required 80K lbm of propellant. The
manned lunar surface sortie mission would use two of the large stages and an aerobrake
module to return the manned module to LEO. The first stage provides the delta V for
lunar transfer. The second stage injects the payload into lunar orbit and provides the
earth return transfer delta V. The aerobrake module provides the means to circularize
into earth orbit. Placement of a station into lunar orbit to assist in the surface

explorations would also be done by two of the large staiges.

9.3.4 Overall Assessment and Recommendation

The recommendation at this time for the groundrules of Phase II is that a program
should begin with a new technology cryogenic expendable OTV sized for 15K Ibm GEO
delivery capability. As ‘more demanding missions materialize, two options are available;
One is to continue in an all-propulsive mode and use two stages. The other option,
particularly if there is a significant number of roundtrip missions, would be to develop a
new size expendable stage and also an aeroassist module that could be used to return the
roundtrip payloads. This approach has been shown to be the cost optimum for Scenario 1
and 2. In addition, it is projected that this approach would also offer the least cost for
the other Scenarios in Rev. 9 because either they involve missions more favorable to the
expendable mode_and/or have the same percentage of roundtrip mission or large delivery
missions as Scenario 2. More ambitious missions such as nuclear waste disposal or
manned lunar exploration can also be done effectively. In summary, the recommended
new technology expendable OTV program provides significant cost advantages, has good

growth capability, and best utilizes the ecapabilities of a mixed launch fleet.
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10.0 SUPPORTING COST DATA

This section presents additional cost data beyond the summaries reported in section
9.0.

10.1 GENERAL GROUNDRULES AND ASSUMPTIONS

The groundrules and assumptions that apply to all OTV concepts investigated during
Phase II are presented in table 10.1-1. It is important to note that all DDT&E cost
include one flight (operational) unit and one GSE unit. The test hardware assumed for
the DDT&E effort is shown in table 10.1-2. A key factor in this area is that the first
flight article will initially serve as the functional test article. Following the functional

test, the unit is refurbed and used as a flight unit.

10.2 FULLY REUSABLE OTV'S

The costs associated with the GB and SB fully reusable system (FRS) concepts are
presented. Both of these concepts used three vehicle types as shown in figure 10.2-1 to
satisfy the mission model. The GB and SB FRS concepts were described in section 3.3

and 3.7, respectively.

10.2.1 Unique Groundrules and Assumptions

In addition to the general groundrules that applied to all OTV concepts, each
concept also involved some unique groundrules. For the most part, these groundrules
defined relationships between the different vehicles of a given concept. As will be
noted, the majority deal with the assumed degree of commonality. Those that apply and
are common to the GB and SB FRS concepts are presented in table 10.2-1.

10.2.2 GB FRS OTYV Concept Cost
10.2.2.1 Cost Summary
The total cost for the GB FRS concept both undiscounted and discounted is

presented in table 10.2-2. Further discussion of the cost associated with each system

element is provided in subsequent paragraphs.
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Table 10.2-2 GB FRS Cost Summary ($M)

DDT&E (Non-Recurring) 2619
OoTV 1656
Mission Control 867
Ground Operations 96

Production 573
Small OTV 495
Large OTV 78

Operations (Recurring) 26068
Launch (CLV) 20023
Mission Control 1743
OTYV Processing 640
Expend/Amortiz Hardware 418
Down Cargo Impact 4242
Total LCC - 30260
Discounted , 8038

10.2.2.2 OTV Cost

The DDT&E for the three types of stages required for the GB FRS concept is
presented in table 10.2-3. The initial stage designated as "small OTV" was sized for a
14.6K b GEO payload and had a total DDT&E cost of $1108 million with the largest
contributor being a new advanced cryo engine. The advanced engine for GB OTV was
estimated to be $50 million cheaper than for a SB OTV because fewer diagnostic
provisions are necessary and no special provisions are required for easy removal and
replace on-orbit. GEO payloads up to 22K lbm and occurring early in the mission model
were satisfied by using the small OTV flown in a 2 stage mode. The delta DDT&E cost
for this step was $74 million with the key contributor being a larger ballute that was
necessary to allow payloads to be returned to GEO.
The third vehicle type was necessary for the manned GEO sortie mission. A larger
propellant capacity and ballute was required and man-rating of subsystems was
necessary. The resulting delta DDT&E was $475 million. The DDT&E for all three

vehicle types was $1656 million.
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The production cost for the GB FRS OTV is $573 million. The theoretical first unit
(TFU) cost for the three vehicle types is presented in table 10.2-4. The number of

production units required to satisfy the model is as follows:

e Small vehicle 10 (includes 1 in DDT&E)
] Large man-rated vehicle 2 (includes 1 in DDT&E)

The direet OTV operations cost is defined as including launch, expendable and
amortized hardware, and recovery. Launch cost varies with the combined weight of the
OTV, ASE, and payload. A user's charge approach was used which meant once three-
quarters of the launch capacity (full load point) was reached the full launch cost was
used ($70 million for CLV). Cost below the full load point was prorated and no
additional cost occurred for launch needs beyond that point. The full load point is 113K
lbm for 150 nm/28.5 deg, 102K lbm at 150 nm/63 deg and 90K lbm at 150 nm/90 deg.
The launch cost for the missions using a GB FRS are shown in table 10.2-5. The total
launch cost was $20,023 million.

OTV expendable hardware consisted of the ballute at $0.78 million per flight.
Amortized hardware included the heat shield and main engines at $0.2 M per flight. The
total cost in this area was $418 million. |

The down cargo cost named with the type of return vehicle was described in section

8.0. The average cost per year was as follows:

e 1995 - 2001 +$678M/year
(STS)

e 2002 - 2010 -$ 56M/year
(STS II)

10.2.2.3 Ground System Cost

The ground system and operations associated with processing the GB FRS and its
payload was described in section 6.0. The DDT&E was estimated to be $96 million for a
processing cell, integration with payload cell, and recovery and support facilities. The

processing cost per flight is estimated at $1.5 million.
10.2.2.4 Mission Control System Cost

The mission control system (MCS) cost covers the necessary facilities, equipment,

and planning necessary for a flight. This area was discussed in section 7.0. The

245



D180-21908-9

868l-AL10

246

OV g 00~ 061 AYYMUNYH I EIVANAAXE <)
L 8L T L LY 69 IYLOL FIDTHHA
8v -8 8L°0 £E5°L WLOLANS  LHM0A4NS
L1°E 0z 0 6T ONIMIAINIONT
51181807
1170 10°0 010 WYivda
MONT NOSIVIT
19 L5°0 059 S3AMYAS
ALS % BNITIOOL
LIANANUD 1S3 SAS
AMYML A0S
EI3LNT % MYNZ WILGASH
16769 v o £6°19 TWLOLHNS  AMYMUMYH
8L 140 969 0/3 % ABSY
459
35y
4] 829 <d] £4°5 <] 66" 1SIS8Y0MIY
9L 691 TIONANOD “WRNSANL
0561 v b1 MIMOL WD IMLIATT
0TS b0y SOINOIAY
&8 oV 509
00" 00ty SANIONG NIYW
095 0Lt (N3 S8 NOISINAOMA
BL"Y ¥5°5 SN ).
L1"8 ov -9 FHNLINMLS
: AT THAN
N4l n4L N4l

AIZIWIL40 LS00
ANLO TIYWS

T3.L9Y NYKW AAYYE d3AW/ )40 L5800
ALO FA9MYT ALD 3891S-&



D180-21908-9

ISV + ALO + peojAed ®

abre = 7 ALO + peojfed @
jjews abeisz = ¢z [apow uofssiw
anjjeq wWnIPSW Yyum jjewrs = WS Jiseq syl Aq pajedipui yey) ueyy 4d3eaub ase saybiyy je1oy ayp

jjews = § ® SNY) pue sayduNe| 03Ul PIPIAIP SeM UOISSIW 1eun| 0l€Z 941 ©

91 £ TIE s 762 ov uonewpul ybin aoa
el 1 ¥47 129 s 1'09 004 uoneulpul ‘P3N A0a
86 SEY £0L s v'89 004 A13n130 039 @oa
v z09 TL6 1 0's6 20 pns 'unt uewun()
v 0'0L st 1 0'0sL 0€EL 1@ "png ‘uny uewun ()
t 0'0L 0'€zL 1 80zt 0'tE ‘1dx3 *pang 'unq -vewun
€ L'6Z 6'LY S 6°'SY 0's ‘q1Q 1eun ‘uvewun
ve LS9 901 I 0'vol (19241 g 607 peys 039
v 699 801 WSZ LS50 119241 v ‘607 Boeys 0o
l 0°0L o€zt 114 Lrozi 0'sZ pauuew »eys 039
i 979 8001 ST v'86 £L'91 ‘uewun ydeys 039
91 €99 €101 1 1'sot ol/zL "M0S 039 pauuey
z gov 0's9 Ws 1'€9 01/0 Jena1ay 1es
l 0oL 6vil 134 9ZiL 81z "¥es 0319 'pul
(4 1'is 5’78 3 9'08 9vi "}es 039 'pyl
l 9°6v 1'08 s 8L LEL "1es 039 Py
v L8y L8L s 8'9¢ 41 1S 039 'pui
4 9EY VoL s '89 00l ‘125 0319 'pul
1 L'8€ $'29 s 9°09 0L ‘1§ 039 "pul
98 L8y L8t s 8'9¢L Ut 120 'Pid NN
7! 0'8¢ L9 s v'65 S'L {09 = £3) A1er0ueld
! 1'is 528 s 508 9yl usogield 039

swbud jesoy zm__m_\_,_& 150) zo_o%u%:: ® w&:m.wmsm ...m_mwx.v_sm ?_."awwﬁnx oSS

Z OLIRUDIS ‘6 "AdY
‘|SPO UOISSIN ALO

1d3>u0) Sy4 g9 104 350D younet §-z°04 3jqey

247



D180-21908-9

resulting cost reflects two levels of technology with the motivation being to reduce the
cost per flight contribution. The total MCS DDT&E cost is $867 million. The total MCS

recurring cost is $1743 million and based on the following:

e 1995 -1999
e 2000 -2010

$6.1 M per flight
$3.1 M per flight

10.2.3 SB FRS OTV Concept Cost

10.2.3.1 Cost Summary
The total cost for the SB FRS concept is presented in table 10.2-6. Further

discussion of the cost associated with each system element follows:

Table 10.2-6 SB FRS Cost Summary ($M)

DDT&E (Non-Recurring) 3262
OTV 1562
Mission Control 867
Ground Operations 38
Orbital Support 795
Production 735
Small OTV 350
Large OTV 69
Orbital Support 316
Operations (Recurring) 25206
Launch 15991
Mission Control 1603
OTV Processing 4060
Expend/Amortiz Hardware 1389
Orbital Support 1085
Down Cargo Impact 1077
Total LCC _ 29204
Discounted 7812
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10.2.3.2 OTV COST

The DDT&E cost for the three types of stages required for the SB FRS concept is
shown in table 10.2-7. Application of each Stage and their differences is the same as
defined for the GB FRS concept. The total DDT&E is $1562 million.

The production cost for the OTV's is $419 million. The TFU cost for each staged is
presented in table 10.2-8. A total of eight small and two large stages are required,
which ineludes one each as part of the DDT&E cost.

The direct OTV operations cost includes that associated with launch, processing,
expendable/amortized hardware, and down cargo impact. The launch cost for the
missions using the SB FRS are shown in table 10.2-9.

In addition, there is the launch of propellant delivery tankers, empty SB OTV's, and
OTYV support accommodations for the Station. The full load factor point is 104K lbm as
all launches go to the Station at 250nm/28.5 deg. The total launch cost was $15,591
million. The OTYV orbital processing operations were described in section 5 and 6. The
average cost per flight for processing the SB FRS was estimated at $10.1M. This was
based on 52 hours of EVA at $81.7K/hour and 313 hours of IVA at $18.7K/hour. The
expendable and amortized hardware cost of $1389 million is based on $1.0M per flight
covering the ballute, heat shield and main engine. In addition, 21 Centurer-G prime
stages at an average cost of $30M is included to cover missions in 1995. The Centaurs
are used because the SB FRS by study groundrules was not available until 1996.

The down cargo cost relates to the return of the propellant delivery tanker. The
average cost per year varies with the vehicle being used to perform the return flight as

shown below.
° 1996 - 2001 +$430M/year
(STS)

e 2002 -2010 -$167M/year
(STS II)

10.2.3.3 Ground System Cost
The ground system cost relates to the recurring processing of the propellant
delivery tankers. DDT&E for the necessary facility/equipments is estimated at $38M.

Operations cost associated with OTV processing on-orbit was discussed earlier.
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10.2.3.4 Mission Control System Cost.
The mission control cost contributors are the same as defined for the GB FRS
concept. The operations cost is less because the first year (1995) missions are done with

Centaur-G prime and it was assumed operations cost are included in its cost per flight.

10.2.3.5 Orbital Support Cost

Orbital support covers the accommodations at the Space Station (see section 5) and
the propellant delivery tanker. The $795M DDT&E cost includes $470M for
accommodations (hangar, servicing equipment, and propellant storage system) and
$325M for the tanker. The production cost reflects a second hangar and propellant
storage tank set ($150M total) as well as two additional storage tank sets ($50M each) in
the way of accommodations and two additional propellant delivery tankers ($33M each).
Orbital support operations cost reflects an average of $2.7 million per SB FRS flight and

is comprised of the contributions shown in table 10.2-10.

Table 10.2-10 Orbital Support Contributions

Element Cost/Flight
e Hangar Use ® $0.25M
.®  Manipulator Use @ $0.07M
e Tanker Processing $0.35M
e OMYV Support $0.42M
(Tanker and payload retrieval from CLV)

e Launch OTV Expend Hardware $1.25M
e Airlock Use ® $0.36M

$2.70M

@ per study groundrules
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10.3 PARTIALLY REUSABLE OTV'S

The costs associated with the GB and SB partially reusable system (PRS) concepts
are presented. Both concepts use two basic stage types and three different aerobrake
modules as shown in fig'ure 10.3-1 to satisfy the mission model. The GB and SB PRS

concepts were described in section 3.4 and 3.8, respectively.

10.3.1 Unique Groundrules and Assumptions

In addition to the common groundrules for all concepts, unique groundrules apply to
the PRS concepts as shown in table 10.3-1 and 10.3-2. The majority of the items deal
with commonality between the stages and between the aerobrake modules for return of

propulsion/avionics, payloads, and erew module.
10.3.2 GB PRS OTYV Concept Cost
10.3.2.1 Cost Summary
The total cost for the GB PRS concept, in performing the Rev. 9 Scenario 2 mission

model, is presented in table 10.3-3. Further discussion of each system element follows.

Table 10.3-3 GB PRS Cost Summary ($M)

DDT&E (Non-Recur) 2,864
OTV 1,814
Mission Control 964
Ground System 96

Production | 432
P/A Module 404
P/L Module 28

Operations (Recurring) 27,773
Launch (CLV) 19,902
Mission Control 2,188
OTYV Processing 683
Expend/Amortize Hdw 3,570
Down Cargo 1,429

Total LCC 31,068

Discounted 8,029
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10.3.2.2 OTYV Cost

The DDT&E for the GB PRS OTV including stages and aerobrake modules is $1814
million with the breakdown presented in table 10.3-4. the small stage and aerobrake
module for propulsion/avionies has a cost contribution of $1092 million. To satisfy more
demanding missions, a larger tank set is required in addition to another aerobrake
module to return unmanned payloads. The resulting DDT&E cost is $363 million. The
same type of OTV (tank set plus P/A module) is used for manned missions, however, all
systems are man-rated. In addition, another type of brake is required for the crew
module involving a DDT&E cost of $358 million.

The production cost for this OTV concept of $432 million only refleets the
aerobrake modules because they are the only reusable hardware. Tank sets and the
brakes themselves are expendable hardware under the operations cost. The TFU costs
for all elements of the GB PRS configurations is presented in table 10.3-5. The number

of production units for each aerobrake module is as follows:

e P/A Module 11 (inecludes 1 in DDTE)
e P/L Module 2 (includes 1 in DDTE)
¢ Crew Cabin Module 1 (ineludes 1 in DDTE)

Operations cost directly associated with the OTV include launch, expendable/
amortized hardware, and down cargo. The total launch cost of $19,902 million is
comprised of the individual mission costs presented in table 10.3-6. The full load point
for user charge calculation is the same as described for the GB PRS concept. The
expendable/amortized hardware cost of $3570 million covers the aerobrakes (not entire

module) and tank sets. The TFU and number of units involved is shown in table 10.3-7.

Table 10.3-7 GB PRS Expendable Hardware

Element TFU ($M) Units
P/A Module Brake 6.7 422
Crew Module Brake 8.4 16
Payload Module Brake 11.9 40
Small Tankset 17.8 361
Large Tankset ' 22.3 56
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The down cargo cost of $1429 million reflects only the return of the aerobrake
modules because the tanksets and brakes are expended at the end of each flight. The

return analysis was described in section 8.2, The average annual return cost is as

follows:
e 1995 - 2001 (STS) + $262 million
e 2002 - 2010 (STSI) - $45 million

10.3.2.3 Ground System Cost
The ground system associated with the GB PRS was described in section 6.0. The
DDT&E is estimated at $96 million and vehicle processing cost is based on $1.6 million

per flight.

10.3.2.4 Mission Control Cost

The mission control associated with the GB PRS was discussed in section 7.0. The
DDT&E cost of $964 million reflects an initial system followed by an upgrade in
technology to reduce the cost per flight. The associated operations cost of $2188

million reflects the following:

e 1995 - 2000 $6.6 M/flight
e 2001 - 2010 $4.2 M/flight

10.3.3 SB PRS OTV Concept Cost
10.3.3.1 Cost Summary
The cost breakdown for the SB PRS concept in performing the Rev. 9 Scenario 2

mission model is presented in table 10.3-8. Further breakdown of each major system

element follows:
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Table 10.3-8 SB PRS Cost Summary ($M)

DDT&E (Non-Recurring) 3,002
oTvV 1,800
Mission Control 954
Ground System 95
Orbital Support 153

Production 322
P/A and P/L Modules ‘ 272
Orbital Support 50

Operations (Recurring) 31,228
Launch (CLV) 20,379
Mission Control 2,049
‘OTV Processing 3,979
Expand/Amortize Hrdw 4,414
Orbital Support 406

Total LCC 34,552

Discounted 8,510

10.3.3.2 OTV

The DDT&E cost for the stages and aerobrake modules is $1800 million. The
breakdown for the stages and aerobrake modules is presented in table 10.3-9. As in the
GB PRS concept, a small OTV with P/A module, a larger OTV with payload return
module and a man-rated large stage with crew module return aerobrake module are
required. '

The production cost of the OTV relates only to the aerobrake modules because the
tanksets are expended after each flight. The TFU for all elements of the SB PRS are

shown in table 10.3-10. The number of production units is as follows:

¢ P/A Module 8 (inel 1 in DDT&E)
e P/L Return Module 2 (inel 1 in DDT&E)
® Crew Module Return Module 1 (inel 1 in DDT&E)

The direct operations costs for the OTV element include that associated with

launch, expended/amortized hardware and OTV processing. The total launch cost of
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$20,379 million reflects launching payloads, propellant tanksets, aerobrakes, and support
accommodations at the Space Station (and the launching of 21 Centaur G prime upper
stages with payloads during 1995. The resulting cost per flight for each of the mission
types is shown in table 10.3-11. A users charge approach was used with 104 K lbm being
the full load point when the launch goes to the Space Station at 250 nm and 28.5 degree.
The expended/amortized hardware cost of $4414 million reflects the tanksets and
aerobrakes and also 21 Centaur G primes ($987 million) used during 1995 since space
basing was not possible until 1996. The TFU and number of units for the OTV elements
is presented in table 10.3-12.

Table 10.3-12 SB PRS Expendable Hardware

Element TFU (M) Units
P/A Module Brake 6.7 401
P/L Module Brake 8.4 16
Crew Module Return Module Brake 11.9 49
Small Tankset 17.6 336

Large Tankset 21.0 65

The orbital processing cost for the SB PRS is $3,979. This is based on $9.8 million
per flight which in turn reflects 52 hours of EVA and 287 hours of IVA and includes a
$1.0 million contribution for the ground processing of the aerobrake/tankset/payload

combination.

10.3.3.3 Ground System Cost

The ground system associated with the SB PRS was described in section 6.0. The
DDT&E estimate of $95 million reflects the facilities/equipment necessary to allow
processing of an aerobrake/tankset/payload combination for each OTV mission. the
ground processing cost per flight of these elements has been included in the OTV

processing cost line item.

10.3.3.4 Mission Control Cost

The mission control system for the SB PRS concept was discussed in section 7.0.
The DDT&E cost of $354 million reflects an initial system followed by an upgrade to
reduce cost per flight. The operations cost of $2,049 million reflects the following cost
per flight:
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® 1996 - 1999 $6.6 M/flight
e 2000-2010 $4.2 M/flight

10.3.3.5 Orbital Support Cost

Orbital support covers the accommodations necessary at the Space Station to allow
preparation of the OTV for each flight. The DDT&E cost of $153 million relates to the
small hangar and vehicle assembly/checkout equipment that is required. The production
cost of $50 million relates to the second set of accommodations equipment (the first set
is part of the DDT&E cost). The orbital support operations cost of $406 million reflects
$1.0 million cost per flight contributed as shown in table 10.3-13.

“Table 10.3-13 Orbital Support for SB PRS

Element . Contribution (§M)
Hanger Use ® 0.25
Manipulator Vac ® 0.07
OMYV Support 0.32
Airlock Use ® ' 0.36

Total 1.00

® At station
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10.4 EXPENDABLE OTV'S

The costs associated with an all-propulsive expendable OTV concept and an
expendable with aeroassisted payload return are presented. The stage approach for the
two concepts is different and accordingly the mission application and unique groundrules

are different.
10.4.1 Expendable All-Propulsive OTV

10.4.1.1 Stage Approach and Groundrules

The stage approach used to satisfy the mission model is shown in figure 10.4-1. A
small stage is developed to deliver payloads of 14.6K lbm GEO equivalent. A larger
stage is developed to deliver payloads up to 21.8K lbm GEO equivalent. Use of two of
these stages in a two stage mode and man-rating the subsystems allows the manned GEO
sortie missions to be performed. The unique groundrules associated with the expendable
stage are presented in table 10.4-1. Again, the majority of the groundrules relate to

commonality between stages.
10.4.1.2 Cost Summary

The total cost for the expendable all propulsive OTV concept is presvented in table

10.4-2. Further discussion of each system element follows.

269



D180-21908-9

80€1-A10

uoneatydayy UOISSIN ALO 9/qepusdx3 “L-p0L 8Bl

EBiK 31LHOS INNVW
S NOL/ZL HO4 Q3ZIS o
ity s  (43DUV1) SIOVIS Z o
ILVH-NVW *
E d NOL/zZL
901
AIVHS ;) 4os aInnvw
\V4 HO4 S3IOVIS
2401 SY a3zis
ALO HIADHV o
NOISSIW
NO'vL HO4 QIZIS e
‘134 3TdNVS oL/0 NOpL
“JONN LIWOD TVA3IHLIY .h«w ‘W
NoL/zL \V/
NGZ NEE m:E\Om N9l - esaveeL
NOVHS °dX3 "4HNS 039 No'vL B g'1Z NOVHS NEL SAVOIAVd
GaNNVIN HYNNT QaINNVI 113S 3 8a4H QINNVWNN (SL74€) ma% m#_:ﬂ,ss_
0 £0 20 Lo 00 66 86 L6 96 G6

S87 NI Q3SS3UdXI SAVOTAVd TV e

270



D180-21908-9

LO61-ALO

ALD UANNYWNN 39491 0L FATLYIEY NOWWO) <]

" CAONYANNAAY 43303dY) M3IM04 MYIIHMLIATT NI ALTTYNOWKWDD 7Z0b4

(S, NWA LNYANNGEY ATTIYNYILNT ANY - AONYANNAIY W3185A5 33WUY) SIINOIAY NI ALITIWYNOWWOD %05

" (AONUANNAAY GAAAY) WALSAS NOISTINGONd NI ALITIUNOWWOD %064
"(SYALSNMHL (3daY) SO NI ALITTYNOWWOD %&6

"‘NOILDFLOMA TWWY3HL NI ALITUNOWWOD %001

"IMNLINYLES NI ALITUNOWWOD %007

<] ALD d3L

"(S3I1M3LLYd 40 30vTid
NI 339N0S M3IMO0d SY d38N 3H43IM 871130 13aNd) M3IMO0d "WIIHMLIATTA NI ALITTYNOWWOD %5

"SIINOIAY NI ALITTYNOWWOD %00T

“(SWILSAS ONIAWNId d3I4IA0W) WILSAS NOISTING0MAd NI ALITIUYNOWWOI %ZOL
" (H3LEAS IYNSSIUL AITATAOW) STM NI ALTTYNOWWOD %08

(UANNYWNGTD T ALD 30471 dNY

suondwnssy pue sajnipunos9 A [ 3/gepuadx3y “[-p'0l 3/qel

*.

WM —NYIW

*

i 1A

271



D180-21908-9

Table 10.4-2 Expendable OTV Cost Summary

DTT&E (Non-Recurring) 2,092
oTvV 1,347
Ground System 120
Mission Control 623

Production 0

Operations (Recur) 23,308
Launch (CLV) 13,976
Mission Control 1,473
OTYV Processing 1,153
Expendable/Hrdw 6,706
Down-Cargo 0

Total LCC 25,400

Discounted 6,237

10.4.1.3 OTYV Cost

The DDT&E cost for the OTV portion of the expendable concept is estimated at
$1,347 million. Three development steps are involved with the cost breakdown shown in
table 10.4-3. The small stage had a cost of $730 million; the large stage required an
additional $349 million, and man-rating of the large stage required $268 million.

No production cost occurs with this concept because it involves all expendable
hardware and is collected under the operations cost category.

The OTYV related operations cost deals with launch and expendable hardware. The
launch cost, based on use of CLV and the users charge approach, contributes $13,376
million. The cost per mission type is shown in table 10.4-4. The TFU cost breakdown
for the three expendable stages is presented in table 10.4-5. The number of stages

involved is as follows:

o Small Stage 346
e Large Stage 109 (includes 46 two stage flights)
e Large Manned Stage 32 (16 flights)

In addition to the stages, a payload rack (multiple manifest flights) and an

interstage for the two stage missions are also expended. The payload rack was required
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on 84 flights and had a TFU of $6M. An interstage was required on 62 flights and had a
TFU of $2.4 million.

10.4.1.4 Ground System Cost

The ground system and associated processing operations for the expendable OTV
were described in Section 6.0. The DDT&E cost of $120 million covers the equipment
integration cell. The processing (vehicle preparation and payload mating/checkout) was

estimated at $2.7 million per flight.

10.4.1.5 Mission Control System Cost

The mission control system includes the hardware and software necessary to
perform a flight as described in section 7.0. The DDT&E cost of $623 million covers a 2
step technology approach that allows for a reduced cost per flight. The recurring cost is

based on the following:

e 1995 -1999 $3.9 M/flight
e 2000-2010 $3.15 M/flight

10.4.2 Expendable with Aeroassist Payload Return

10.4.2.1 Stage Approach and Groundrules

The stage approach for this concept was described in section 3.6. It's use in
performing the various missions is shown in figure 10.4-2. Small and large stages are
used for delivery missions and the large stage along with either a payload or crew
module aerobrake module is used for roundtrip missions. The unique groundrules'and

assumptions associated with the concept are presented in table 10.4-6 and -7.
10.4.2.2 Cost Summary

A top level cost breakdown of this expendable with aeroassist payload return

concept is presented in table 10.4-8. Further discussion of each system element follows.
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Table 10.4-8 Expendable OTV with Aeroassist Module Cost Summary

DTT&E (Non-Recurring) 2,511
OTV 1,616
Mission Control 775
Ground System 120

Production 39
P/L Module 39

Operations 22,521
Launch (CLV) 13,667
Mission Control 1,601
OTYV Processing 1,174
Expend/Amortize Hrdw 5,946
Down-Cargo 132

Total LCC 25,071

Discounted 6,248

10.4.2.3 OTYV Cost

The DDT&E cost for the OTV portion of this concept is estimated at $1,616 million.
The cost breakdown related to the stage systems is presented in table 10.4-9. The small
stage requires $730 million; development of the large stage and payload aeroassist
module require an additional $540 million; and man-rating the large stage along with
development of a ecrew module aeroassist module contributes $345 million.

The production cost of $39 million relates to a second payload aerobrake module.
One unit is provided in the DDT&E and no additional ¢rew module aerobrake modules
are required beyond that provided in the DDT&E.

The OTV operations cost is defined to include the launch, expendable hardware, and
down cargo. The launch cost contribution is $13,667 million. The cost per mission type
is presented in table 10.4-10. The full load point for all GEO destination missions was
113K Ibm when using the CLV, 102K lbm for the medium inelination DOD missions and
90K lbm for the high inclination missions. The expendable hardware cost for the
concept is $5,946 million. The TFU cost for the major systems is presented in table

10.4-11. The number of units required for each system element is as follows:
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Element Units TFU ($M)
¢ Small Stage 344 ‘ 36.9
e Large Stage (unmanned) 66 51.9
e Large Stage (manned) 18 63.7
e P/L Aerobrake 40 ' 21.8
® Crew Module Aerobrake 16 8.4

The expendable hardware cost also includes an average contribution of $0.5M per
flight for payload racks and interstages.
The down cargo cost of $132 million is based on an annual cost of $44 million for

1999-2001. Other years did not have down cargo or a cost impact.

10.4.2.4 Ground System Cost

The ground system and associated processing operations for the expendable OTV
were described in section 6.0. The DDT&E cost of $120 million covers the equipment
integration cell. The processing (vehicle preparation and payload mating/checkout) was

estimated at $2.75 million per flight.

10.4.2.5 Mission Control System Cost

The mission control system includes the hardware and software necessary to
perform a flight as described in section 7.0. The DDT&E cost of $775 million covers a
2-step technology approach that allows for a reduced cost per flight. The recurring cost

is based on the following:

e 1995-1999 : $3.9 M/flight
e 2000-2010 $3.65 M/flight
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11.0 ENVIRONMENTAL ANALYSIS

11.1 INTRODUCTION

As discussed earlier in this document, the Rev. 9 mission model and use of a CLV
has lead to the conclusion that an expendable OTV is cost optimum. The fact that the
vehicle is expended after each mission is the major departure from the results of the
Phase 1 conclusions insofar as potential environmental effects are concerned. In this
regard, there are two disposal types: disposal in high orbits and beyond, which will be

referred to here as space disposal; and disposal into the Earth's atmosphere.

11.2 SPACE DISPOSAL

The majority of the OTV missions result in space disposal. These include high Earth
orbit, GEO delivery, translunar, and interplanetary missions. OTVs used for GEO
delivery, are boosted to a circular orbit at an altitude of GEO + 850 nm after paylbad
release. This orbit precludes interference with the spacecraft at GEO and assures a
very long orbital lifetime. OTVs used to place payloads in high Earth orbit or on
translunar trajectories are left in either a high Earth orbit (below or above GEO) or
targeted to impact the moon (as was done with the S-IVB stages on the Apollo program).
In either case, the spent stages offer no threat in terms of Earth impact. OTVs used to
place payloads on interplanetary trajectories have attained earth escape velocity and
are left in solar orbit after payload separation. Residual propellant will be used to
assure that this orbit does no cross the Earth's orbit. Given planetary and comet
perturbations, this does not reduce Earth return probability to zero but makes it quite
small. _

Based on the foregoing, OTV disposal in space (as defined above) is judged to

require no environmental analysis.

11.3 EARTH DISPOSAL

Missions that result in a return to LEO (manned missions, satellite retrieval, ete.)
are placed on an atmosphere entry trajectory after payload delivery. These few
missions will result in a relatively small percentage of the vehicle surviving the heat of
entry to impact the Earth's surface. While the analysis of how much material will
survive and the size of the resulting debris footprint is beyond the scope of this study,
the entry trajectory would be tailored to place this footprint in remote ocean areas.

The materials that are vaporized during OTV entry consist primarily of aluminum,

graphite/epoxy, steel, and propellant residuals. The basic elements involved are, for the
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most part, the constituents of meteors that are also vaporized in the atmosphere. The
vaporization process is substantially complete above 100,000 ft and is spread over a
large area. The quantities involved are minor compared to the meteor flux.

An exhaustive and quantitative analysis of the constituents is beyond the scope of

this study. A qualitative analysis indicates no environmental concerns.
11.4 CONCLUSIONS

There exist no environmental concerns associated with the use of an expendable

OTYV as defined in this study for the mission scenarios specified.
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12.0 RECOMMENDED CONCEPT DEFINITION

This section summarizes the key features of the new technology expendable OTV
which was the recommended concept resulting from the trade studies described in
section 9.0. It should be noted, however, that a new technology expendable with
aeroassist payload return provided essentially the same cost and would have been

recommended with more return missions.

12.1 SYSTEM APPLICATION AND DESCRIPTION

The time-phased application of the new technology expendable OTV in satisfying
the Rev. 9, Scenario 2 mission model is shown in figure 12.1-1. The initial stage is sized
for the 14.6K lbm delivery mission to GEO and is used throughout the mission model.
When more demanding missions occur in 1998 a new large version of the stage is
introduced. The size of the larger stage is determined by the plan to use two of these
stages to perform the most demanding mission which is the manned sortie to GEO.

Configuration. The key configuration characteristics of the small and large stages
are presented in figure 12.1-2 and 12.1-3, respectively. The small stage has a start burn
weight of 50.5K lbm when delivering a 14.6K lbm payload to GEO. For less demanding
missions the stage is off-loaded. The large vehicle is sized to serve as one of two stages
used to perform the manned GEO sortie mission. As such, an individual stage is capable
of delivering 33K lbm to GEO. When flown in a two stage mode, 12K lbm can be
transported to GEO and 10K lbm returned to LEO. The launch weight of this dual stage
system provides a small margin relative to the launch vehiecle lift capability.
Subsystems for both stages (small and large) are essentially the same.

Structures. The body shell uses a graphite/epoxy honeycomb sandwich design.
Major rings are located at each tank support location as well as at the payload interface
and ASE interface. The avionics/equipment support ring consist of GR/EP structure
with aluminum doors for mounting of avionics and electrical power components. The
LH9 and LO2 tanks are all-welded 2219-T87 aluminum and are supported by struts
within the external body shell. Both tanks have zero-g start baskets for propellant
acquisition and are sized for an oxidizer-to-fuel mixture ratio of 6:1. The propellant
tank shells are designed to permit room temperature proof testing to ensure service life
requirements. The hydrogen tank has spherical heads and the oxygen tank has .707
elliptical heads.

Main Propulsion System. The main engines are advanced LO2/LH2 expander cycle

space engines, with retractable nozzles. The engines are rated at a maximum vacuum
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thrust of 8000 1bf each and provide a specific impulse of 483 sec at an oxidizer-to-fuel
mixture ratio of 6:1. Thrust vector control is provided by two electromechanical
ballsecrew linear actuators for each engine, equipped with redundant electric motor
drives. Pressurization for the main propellant tanks is autogenous and consists of
plumbing for delivery of pressurization gases (GH2, GOg2) from the engine-mounted
bleed ports to the tanks. Propellant feed lines are of aluminum and include bellows
expansion joints to compensate for thermal expansion and engine gimballing. The
propellant fill/drain/dump system includes rise-off disconnects for LH2 and LO2 at the
stage/ASE interface. Two separate tank vent/relief systems are provided. All main
valves in the propellant feed system, and fill/drain/dump system are electrically
actuated.

Reaction Control System. The RCS uses hydrazine monopropellant, pressurized by
nitrogen gas supplied from a separate gas bottle. Sixteen thrusters are located in four
modules, and use a catalytic decomposition gas generator to produce 25 lb thrust each
with a 320 psia supply pressure. Pressurant is supplied by a 3500 psia stored gas system,
using a KEVLAR-overwrapped storage bottle. Propellart storage consists of 22 in
diameter titanium tanks with expulsion diaphragms each having a storage capacity of
195 1b of hydrazine.

Thermal Control. The passive thermal control techniques include insulation
blankets, thermal control coatings, and selected radiative surfaces. The thickness of
the aluminum used for the avionies ring assembly is controlled to provide for proper
heat flow from internally mounted components and its exterior surface is covered with
flexible optical solar reflector (FOSR) to provide the radiative surface. Eleetrical
heaters are provided for RCS components and avionies equipment as required. The LH?
and LO2 tanks are insulated with MLI. The MLI consists of layers of doubly aluminized
kapton with a dacron net spacer. Fifty layers of MLI are used on  the LO2 tank and
34 on the LH2 tank. The MLI wrapped tanks are enclosed within purge barriers which
are purged with dry gas (helium for the LH9 tank and nitrogen for the LO9 tank) prior to
launch.

Guidance and Navigation. The guidance and navigation subsystem consists of an
internally redundant laser gyro inertial reference unit (IRU) and a star tracker. The IRU
provides angular rate and linear acceleration data. Attitude is initialized and updated
by the star tracker.

Communications and Data Handling. The communications subsystem consists of
redundant radio frequency (RF) links that are NASA STDN/TDRS compatible.

Deployable pairs of antenna pods are diametrically located in the equipment ring
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assembly. Each RF link contains a 20W S-band power amplifier and a NASA
STDN/TDRS transponder.

The data handling subsystem consists of four advanced integrated data management
units, each containing its own signal processing and conditioning units, and
instrumentation for status monitoring of stage subsystems. The instrumentation
subsystem provides for monitoring of main propellant tank loading and usage.

Electrical Power. The electrical power source for the small stage is silver-zine
batteries because the mission duration is less than one day. The large stage when used
for manned sorties would use LO9/LH2 fuel cells. Redundancy is provided in the power

conversion and distribution units.

12.2 PROGAMMATICS

The development schedule for the new technology small expendable eryo OTYV is
estimated to require 6 years. The pacing item will be the advanced main engine. A
three year development time is allocated for the large unmanned stage because of its
similiarity with the small stage. Three years has also been allowed to achieve man-
rated status of the large stage. The average production rate is 26 stages per year.

The total non-recurring cost for this concept is $2,091 million. The vehicle
contribution being $1,348 million and the remainder related to the necessary mission
control and ground operations systems. (Note: the ground and mission operations cost
were not defined in the Phase I analysis). The total recurring cost for 442 OTV flights is
$23,308 million. Launch cost contributes nearly $14,000 million while the production

cost of the expendable stages adds $6,700 million.

12.3 TECHNOLOGY NEEDS

For the new technology expendable OTV, the most significant technology needs are
the advanced engine and avionies. The advanced engine is cost optimum as well as
necessary for performance reasons. The assumed Isp of 483 sec will require
development work to achieve high chamber pressures (=1500 psia) and high expansion
ratios (=1000) Long life and maintenance features are not important when used in an
expendable mode. The most significant needs in avionies deals with data management
systems. In this area, improvements are necessary in redundancy management
techniques such as voting schemes and functional partioning. Reductions are also
required in weight, power, and packaging density.

Should payload return by aeroassist means be selected for growth missions then

improvements are necessary in the areas of the accuracy of aerothermal and
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aerodynamic predictions, thermal protection system capability, and development of
guidance algorithms. An aeroassist fight experiment should be performed to

demonstrate the conecept.
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13.0 SUMMARY AND CONCLUDING REMARKS

The most significant change in the prior findings deals with the basing mode and the
reusability of the OTV as brought about by a new unmanned cargo launch vehicle
(150 K 1bm capability) and larger OTV mission models (Rev. 8: 250 to Rev. 9: 420
flights). The least cost system for the above conditions is a new technology expendable
eryogenic OTV. This approach provided a 28% discounted cost advantage over fully or
partially reusable GB or SB OTV concepts. The principal areas contributing to the cost
advantage over the reusable GB OTV concept is less launch cost when using a user's
charge approach and no earth return penalty. The launch savings occurs because 85% of
the missions are delivery only. On these missions, the new expendable OTV has an
average launch weight savings of 30,000 lbm relative to a reusable OTV because it does
not require a GEO deorbit burn (6250 fps) or an aeroassist device (approximately
2500 lbm) to be used for the LEO capture maneuver. Cost savings relative to a SB OTV
only mode is in DDT&E because of a smaller stage and no orbital support is required.
Recurring cost savings occur in the OTV processing area and orbital support. In
summary, the new expendable concept provides least cost because the large savings in
DDT&E, launch, no recovery, and processing far exceed the expendable hardware cost.

The selected expendable OTV program would begin with a stage sized for delivery
of 15K Ibm to GEO. When more demanding missions (including roundtrip) occur, an all-
propulsive mode can be maintained by using multiple stages or an alternate mode could

employ an aeroassist module to only return the payloads.
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